8. а) Точка С лежит на отрезке AB, причем АВ = 28 см, AC: CB = 4:3. Найдите AC и CB. б) Точка В лежит на отрезке AC, причем AC = 30 см, АВ: ВС = 3:2. Найдите AB и BC.
По условию - правильная четырехугольная пирамида, около которой описан конус
⊥
∠
см
Δ - осевое сечение конуса, где и - образующие конуса
Так как - правильная четырехугольная пирамида,
значит в основании лежит квадрат
∩
⊥
Проведём ⊥ тогда ⊥ и как линейный угол двугранного угла
- центр окружности, описанной около квадрата
Значит расстояние от центра основания пирамиды до образующей конуса есть длина перпендикуляра , т. е. ⊥
Пусть тогда
, где - диагональ квадрата, - сторона квадрата
( как диагонали квадрата)
Δ - прямоугольный, равнобедренный, следовательно
Рассмотрим Δ - прямоугольный
по теореме Пифагора найдем
С одной стороны: ,
а с другой стороны: Приравняем:
см
Тогда
см
(см ²)
ответ: см²
Давид-Ольга
08.02.2022
Думаю так выберешь одно из них: 1)Через вершину С провести прямую параллельно диагонали. Получится треугольник АСЕ, в котором АЕ = 14+1=15м, АС = 13м, СЕ = 14м. Найти площадь этого треугольника по формуле Герона. Потом найти высоту этого треугольника, разделив две его площади на АЕ, то есть на 15. Высота эта будет и высотой трапеции, площадь трапеции можно найти по формуле: S=1/2(a+b)h 2)Разность осн-ний=13см. Высоты отсекают от большего осн-ния отрезки, один из кот. =х, другой=(13-х) Выразив высоту трапеции через диагональ и часть большего осн-ния, получаем: 169-x^2=196-(13-x)^2 Найти "х", вычислить высоту (h) Найти площадь по ф-ле: S=h*(a+b)/2=?
∠
Δ
Так как
значит в основании лежит квадрат
Проведём
Значит расстояние от центра основания пирамиды до образующей конуса есть длина перпендикуляра
Пусть
Δ
Рассмотрим Δ
по теореме Пифагора найдем
С одной стороны:
а с другой стороны:
Приравняем:
Тогда
ответ: