Лоскутова
?>

делаю задания из контрольной. Очень сильно нуждаюсь в вашей

Геометрия

Ответы

zabava-83
Свойства параллельных прямых 
Теорема 

Две прямые, параллельные третьей, параллельны. 
Доказательство. 

Пусть прямые a и b параллельны прямой с. Допустим, что прямые a и b не параллельны. Тогда они пересекаются в некоторой точке С. Получается, что через точку С проходит две прямые параллельные прямой с. Но это противоречит аксиоме «Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной» . Теорема доказана. 

Теорема 

Если две параллельные прямые пересечены третьей прямой, то внутренние накрест лежащие углы равны. 
Доказательство. 

Пусть есть параллельные прямые a и b, которые пересекаются секущей прямой с. Прямая с пересекает прямую а в точке A и прямую b в точке B. Проведем чрез точку A прямую a1 так, что бы прямые a1 и b с секущей с образовали равные внутренние накрест лежащие углы. По признаку параллельности прямых прямые a1 и b параллельны. А так как через точку A можно провести только одну прямую параллельную b, то a и a1 совпадают. 
Значит, внутренние накрест лежащие углы, образованные прямой a и b, равны. Теорема доказана. 

На основании теоремы доказывается: 

Если две параллельные прямые пересечены третьей прямой, то соответствующие углы равны. 

Если две параллельные прямые пересечены третьей прямой, то сумма внутренних односторонних углов равна 180 º
supercom-ru-marinaguseva4267
Так как AK - биссектриса, то:
\frac{BK}{AB}= \frac{KC}{AC} \ \ \textless \ =\ \textgreater \ \ \frac{BK}{KC}= \frac{AB}{AC}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda*x_2}{1+\lambda} \\y= \frac{y_1+\lambda*y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины AB и AC:
используем формулу:
|AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|AB|=\sqrt{(-2-2)^2+(5-2)^2}=\sqrt{16+9}=5 \\|AC|=\sqrt{(-2-10)^2+5^2}=\sqrt{169}=13
\frac{BK}{KC}= \frac{AB}{AC}= \frac{5}{13} =\lambda
находим координаты точки K:
x_1=2;\ x_2=10;\ y_1=2;\ y_2=0;\ \lambda=\frac{5}{13} \\ \\K( \frac{2+ \frac{5}{13}*10 }{1+\frac{5}{13}} ;\frac{2+ \frac{5}{13}*0 }{1+\frac{5}{13}})=K( \frac{2+ \frac{50}{13} }{ \frac{18}{13}}; \frac{2}{ \frac{18}{13} })=K( \frac{ \frac{76}{13} }{ \frac{18}{13}}; \frac{26}{18} )=K( \frac{76}{18}; \frac{26}{18}) = \\=K( \frac{38}{9}; \frac{13}{9})=K(4 \frac{2}{9};1 \frac{4}{9} )
теперь определим вид треугольника для этого используем теорему косинусов:
для начала найдем длину BC:
|BC|=\sqrt{(2-10)^2+2^2}=\sqrt{68}
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B
AC^2=AB^2+BC^2-2*AB*BC*cosB \\2*AB*BC*cosB=AB^2+BC^2-AC^2 \\cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}
подставим значения:
cosB= \frac{AB^2+BC^2-AC^2}{2*AB*BC}= \frac{25+68-169}{2*5*\sqrt{68}}= \frac{-76}{10\sqrt{68}} =- \frac{76}{10\sqrt{68}}
cosB<0 поэтому угол тупой и треугольник тупоугольный
ответ: K(4 \frac{2}{9};1 \frac{4}{9} );\треугольник тупоугольный

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

делаю задания из контрольной. Очень сильно нуждаюсь в вашей
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Viktoriya405
apro3444595
dinadumno2114
Евгений
juli19657
sokolskiy458
tiv67
mgrunova
petria742
dmitryshigin
Nikolai172
samofar
veronica1344
andrey4work918
Mariya dmitrievna