Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный, ВМ=АВ
Длины сторон треугольника ABC — последовательные целые числа (дано).
Примем сторону АВ=х, АС=х+1, ВС=х+2
Тогда СМ=х+2-х=2
Т.к. АМ медиана, то ВМ=СМ=2, ⇒
ВС=4, АВ=ВМ=2, АС=2+1=3
Предположим, что большей является сторона АС. Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4
Периметр АВС=2+3+4=9 (ед. длины)
Сорокина-Светлана
29.07.2020
Пусть в стороны треугольника равны a,b,c, а медианы, проведенные к соответствующим сторонам, равны . Рассмотрим треугольник с медианой , проведенной к стороне a. Медиана разбивает треугольник на два треугольника, для каждого из этих двух треугольников запишем неравенство треугольника, учитывая, что медиана делит сторону a пополам:
Сложим данные неравенства и получим:
Аналогичные действия можно проделать с двумя другими медианами. В итоге мы получим три неравенства:
Сложим данные неравенства. Получим:
Теперь вычтем из обеих частей неравенства (a+b+c). Получим:
А это есть именно то утверждение, которое требуется доказать.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны точки A(3;4), B(-4;0), C(5;-3) и M(-2;7Равны ли вектора:AB=CM
Обозначим медиану АМ, биссектрису ВК.
ВК⊥АМ и пересекает ее в т.Н.
ВН является высотой ∆ АВМ.
Высота и биссектриса совпадают ⇒треугольник АВМ равнобедренный, ВМ=АВ
Длины сторон треугольника ABC — последовательные целые числа (дано).
Примем сторону АВ=х, АС=х+1, ВС=х+2
Тогда СМ=х+2-х=2
Т.к. АМ медиана, то ВМ=СМ=2, ⇒
ВС=4, АВ=ВМ=2, АС=2+1=3
Предположим, что большей является сторона АС. Тогда АВ=1, ВС=2, АС=3; это противоречит теореме о неравенстве треугольника (3=1+2). Следовательно, АВ=2, АС=3, ВС=4
Периметр АВС=2+3+4=9 (ед. длины)