1. В основании – прямоугольник, поэтому треугольник ABD – прямоугольный. По теореме Пифагора находится его гипотенуза.
BD−→−=AB2+AD2−−−−−−−−−−√=62+82−−−−−−√=10
2. Достроим четырехугольник KPRM, где P и R – середины BB1 и DD1 соответственно.
По признаку параллелограмма все четыре получившихся четырехугольника ABPK,BCMP,CMRD и AKRD – параллелограммы.
Следовательно, KPRM – тоже параллелограмм, причем равный основаниям параллелепипеда. А значит, и прямоугольник.
Диагонали прямоугольника KM=PR=BD= равны. Следовательно, KM−→−=10
3. Рассмотрим прямоугольный треугольник CC1L. Угол CC1L равен углу B1BC, который в свою очередь равен 60° по условию. Следовательно, угол C1CL=30°. По теореме о катете напротив угла в 30° гипотенуза CC1=2⋅LC1=2⋅4=8.
И CC1−→−=8
4. Рассмотрим треугольник B1CC1.
Его уголCC1B1=60° , его стороны CC1 и B1C1
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Геометрия 19 номер Объяснение
проведем высоту к основанию, она будет являться медианой
1) делит основание на два равных отрезка
2)образует с основанием угол в 90*
получится два равных прямоугольных треугольника.
рассмотрим один из них- нам известна гипотенуза и катет.
Х-высота ( в р/б) и катет(в прямоугольном треугольнике)
Гипотенуза=13
Один из катетов равен половине основания
10/2=5
по т пифагора найдем неизвестный катет( Х, высоту р/б)
13^2=5^2+x^2
x^2=169-25
x^2=144
x=корень из 144
х=12 дм
б)
s(р/б)=а*h/2 (а - основание)
s(р/б)=12*10/2
s(р/б)=12*5
s(р/б)=60 дм^2