katyn76
?>

На рисунке отрезки OA1 = А1 А2 = A2A3 = АЗА4 . Прямые В1 А1, В2 А2 , ВЗА3, B4A4параллельны. Длина отрезка OB4 равна 12 см.Найти длины отрезков ОВ1 , В 1В2, В2В3, В ЗВА у меня соч

Геометрия

Ответы

kuchino09

ggffgg

alexandergulyamov
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
sbalashov62
Равнобедренного может? Если да , то вот .
В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана.
Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны.
Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На рисунке отрезки OA1 = А1 А2 = A2A3 = АЗА4 . Прямые В1 А1, В2 А2 , ВЗА3, B4A4параллельны. Длина отрезка OB4 равна 12 см.Найти длины отрезков ОВ1 , В 1В2, В2В3, В ЗВА у меня соч
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ekaterina1654
Olenkalebedeva4477
Artur-62838
Larisa Bulgakova
sredova71121
Мечиславович_Кварацхелия1988
pnatalia
Pautova1119
mamanger
steam22-9940
Valerevna
darialyagina
anovikovsr
Александра_Наталья1417
avdoyan6621