Поделитесь своими знаниями, ответьте на вопрос:
на основании AB равнобедренного треугольника ABC как на диаметре построена полуокружность с центром O пересекающие стороны AC и BC в точках D и E соответственно.Найдите градусные меры дуг AD, DE и BE, если угол ACB=86⁰
Замечаем, что диаметр вписанной окружности равен высоте трапеции! (см. чертеж!)
Сумма боковых сторон равна сумме оснований (условие того, что в четырехугольник можно вписать окружность):
AD + BC = 40 см (*)
Опустим из вершины B высоту BB₁ (а из вершины C высоту CC₁) и рассмотрим ΔABB₁ (∠B₁ = 90°). По теореме Пифагора получаем:
AB₁² = 20² - 12² = 8 · 32 = 16² ⇒ AB₁ = 16 см
Но 2 · AB₁ = AD - BC = 32 см (**)
Складывая (*) и (**) получаем:
2 · AD = 72 см ⇒ AD = 36 см, BC = 40 - 36 = 4 см
S = (AD + BC) · BB₁ ÷ 2 = 40 · 6 = 240 см²