Координаты середины отрезка через координаты радиус-векторов его концов.Формулы для нахождения координат середины отрезка легко получить, обратившись к алгебре векторов.Пусть на плоскости задана прямоугольная декартова система координат Oxy и точка С – середина отрезка АВ, причем и .По геометрическому определению операций над векторами справедливо равенство (точка С является точкой пересечения диагоналей параллелограмма, построенного на векторах и , то есть, точка С – середина диагонали параллелограмма). В статье координаты вектора в прямоугольной системе координат мы выяснили, что координаты радиус-вектора точки равны координатам этой точки, следовательно, . Тогда, выполнив соответствующие операции над векторами в координатах, имеем . Откуда можно сделать вывод, что точка С имеет координаты .Абсолютно аналогично могут быть найдены координаты середины отрезка АВ через координаты его концов в пространстве. В этом случае, если С – середина отрезка АВ и , то имеем .
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
серед наведених чотирикутників укажіть чотирикутник, який може бути описаним навколо кола але не може бути вписаним у коло