ValerevnaRustam1072
?>

Даны векторы ⃗{−5;1}, ⃗{0;−3}, ⃗{4;−2}. Найдите координаты вектора ⃗= ⃗-3⃗+2.⃗ 2. Напишите уравнение окружности с центром в точке P(2;1), проходящей через точку Q(5;5 3. Треугольник KMN задан координатами своих вершин: K(2;2), M(6;5), N(5;-2). Докажите, что треугольник KMN равнобедренный. Найдите биссектрису, проведенную из вершины K. 4. Даны координаты вершин трапеции ABCD: A(-3;4), B(1;6), C(5;2), D(5;-4). AD и BC основания трапеции. Напишите уравнение прямой, проходящей через среднюю линию трапеции MN.

Геометрия

Ответы

cutur3414

Доказательства в объяснении.

Объяснение:

1. Угол КАВ - угол между касательной АК и хордой АВ, проходящей через точку касания А, равен половине градусной меры дуги АВ, заключённой между его сторонами. Вписанный угол АСВ опирается на эту же дугу АВ, а  вписанный угол равен половине градусной меры дуги, на которую он опирается.

Следовательно, ∠АСВ = ∠КАВ, что и требовалось доказать.

2. Т.к. углы АВК И ВАС- это внутренние накрест лежащие при КВ║АС и секущей АВ, то ∠АВК =∠ВАС.   ∠АСВ = ∠КАВ (доказано выше).

По сумме внутренних углов треугольников АВС и КАВ имеем:

∠АВС = 180 - (∠АСВ + ∠ВАС)  

∠АКВ = 180 - (∠КАВ + ∠АВК)   =>

∠АВС = ∠АКВ.  =>  ∠АВК = ∠АКВ  =>

Треугольник КАВ - равнобедренный, так как углы при основании ВК равны. Что и требовалось доказать.  

3. Треугольники АСВ и КАВ подобны по  2 признаку подобия (по двум углам) с коэффициентом подобия k = АС/АВ. (Отношение соответственных сторон треугольников).

Площади подобных треугольников относятся как квадрат коэффициента подобия.

Sabc/Sabk = k² = АС²/АВ².

По теореме косинусов в тр-ке АВС найдем:

АВ²=2АС²-2АС²·Cosα = 2АC²·(1-Cosα).  

Тогда k²=АС²/(2АC²·(1-Cosα)) = 1/(2·(1-Cosα)). =>  

к² зависит только от угла α, то есть  

отношение площадей зависит только от величины угла АСВ.

Что и требовалось доказать

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Даны векторы ⃗{−5;1}, ⃗{0;−3}, ⃗{4;−2}. Найдите координаты вектора ⃗= ⃗-3⃗+2.⃗ 2. Напишите уравнение окружности с центром в точке P(2;1), проходящей через точку Q(5;5 3. Треугольник KMN задан координатами своих вершин: K(2;2), M(6;5), N(5;-2). Докажите, что треугольник KMN равнобедренный. Найдите биссектрису, проведенную из вершины K. 4. Даны координаты вершин трапеции ABCD: A(-3;4), B(1;6), C(5;2), D(5;-4). AD и BC основания трапеции. Напишите уравнение прямой, проходящей через среднюю линию трапеции MN.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

nofate1016585
karinasy4ewa
Bordo
toniv
MikhailovnaAnastasiya
Андрей Шитенкова
ekaterinava90
lider-mpl550
gaina6678
mzia-mzia-60682
Владимирович_Слабый
irohmichaelchikaodiri
Andrei Morozov
LidiyaBorzikh
ooottdi