Плоскость α, параллельная стороне ВС треугольника АВС, пересекает стороны АВ и АС в точках M и N соответственно. Найдите длину отрезка ВС, если MN = 6 см, а АМ:МВ = 3:5
№2 Площадь круга равна πД²/4, где Д-диаметр окружности. Но в данном случае он равен диагонали, вписанного в ограничивающую его окружность квадрата. В свою очередь Д²=а²+а²=2а², где а - сторона квадрата. В тоже время площадь квадрата равна а² и равна 72 дм² ⇒Д²=2а²=72*2=144 дм² площадь круга равна S=πд²/4=(π*144)/4=36π (дм²)
№1 Сторона тре-ка 45/3=15 см Она есть одним из катетов образованного диаметром 2R окружности и другим катетом, равным радиусу R прямоугольного тре-ка. По т. Пифагора 4R²=15²+R² 3R²=225 R=5√3 Центральный угол вписанного 8-угольника составляет 360/8=45° Сторону вписанного 8-угольника определим как сторону равнобедренного тре-ка, лежащую против угла в 45° между сторон равных R. в=2Rsin45=2*5√3*√2=10√6
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Плоскость α, параллельная стороне ВС треугольника АВС, пересекает стороны АВ и АС в точках M и N соответственно. Найдите длину отрезка ВС, если MN = 6 см, а АМ:МВ = 3:5
Площадь круга равна πД²/4, где Д-диаметр окружности. Но в данном случае он равен диагонали, вписанного в ограничивающую его окружность квадрата.
В свою очередь Д²=а²+а²=2а², где а - сторона квадрата. В тоже время площадь квадрата равна а² и равна 72 дм² ⇒Д²=2а²=72*2=144 дм²
площадь круга равна S=πд²/4=(π*144)/4=36π (дм²)
№1
Сторона тре-ка 45/3=15 см
Она есть одним из катетов образованного диаметром 2R окружности и другим катетом, равным радиусу R прямоугольного тре-ка. По т. Пифагора
4R²=15²+R²
3R²=225
R=5√3
Центральный угол вписанного 8-угольника составляет 360/8=45°
Сторону вписанного 8-угольника определим как сторону равнобедренного тре-ка, лежащую против угла в 45° между сторон равных R.
в=2Rsin45=2*5√3*√2=10√6