Поделитесь своими знаниями, ответьте на вопрос:
Контрольная по геометрии не знаю как решить Разложите на множители квадратный трехчлен:1) х2 – 5х + 6; 2) 5у2 – 3у – 2.2.Изобразите схематически график функции:1) у=3х2; 2)у= 1/4 (х+2)^2.3.Постройте график функции у=х2 - 4х + 4. С графика найдите:1)значение у при х= -0, 5;2)значение х при у=2;3)нули функции;4)промежутки, в которых у >0 и у<0.4.Сократите дробь: (3у^2+2у-1)/(5у+55.Найдите область определения функции:1)у=х2 – 8х; 2)у=√(5х-2); 3)у=1/(2у^2-5у-3).6.Найдите координаты точки пересечения графиков функцийу=6х2 – 2 и у=11х.
Свойство касательных к окружности, проведенной из одной точки:
отрезки касательных равны.
х-радиус вписанной окружности
(см. рисунок в приложении)
Учитывая, что периметр равен 54, составляем уравнение:
х+х+х+х+3+3+12+12=54
4х+30=54
4х=24
х=6
2. Из условия:
∠С=х
∠А=4х
∠В=4х-58°
Так как четырехугольник вписан в окружность, то
∠А+∠С=180°
∠В+∠Д=180°
4х+х=180°
5х=180°
х=36°
Тогда
∠С=36°
∠А=4х=4·36°=144°
∠В=4х-58°=144°-58°=86°
∠В+∠Д=180° ⇒ ∠Д=180°-∠В=180°-86°=94°
ответ. ∠А=144°
∠В=86°
∠С=36°
∠Д=94°