Нехай дано прямокутник ABCD, BD — діагональ, DC = 10 см, ∠BDC = 60°.
Р-мо BDC:
∠BCD = 90° — як кут прямокутника, отже ΔBDC — прямий, ∠BDC = 60° — за умовою, тоді ∠DBC за теоремою про суму кутів трикутника буде дорівнювати:
∠DBC = 180°−90°−60° = 30°.
По властивості катета, який лежить напроти кута 30°, гіпотенуза трикутника буде рівна:
BD = 2*DC = 2*10 = 20 (cm)
Знайдемо інший катет за т. Піфагора:
Підставимо значення у формулу площі прямокутника:
Відповідь: Площа прямокутника рівна 100√3 см² або приблизно 173,2 см².
Поделитесь своими знаниями, ответьте на вопрос:
Подобны ли треугольники АВС и А1В1С1, если АВ=1, 7 см ВС=3 см, Са=4, 2 см А1В1=34 дм В1С1= 60 дм С1А1=84 дм
Нехай дано прямокутник ABCD, BD — діагональ, DC = 10 см, ∠BDC = 60°.
Р-мо BDC:
∠BCD = 90° — як кут прямокутника, отже ΔBDC — прямий, ∠BDC = 60° — за умовою, тоді ∠DBC за теоремою про суму кутів трикутника буде дорівнювати:
∠DBC = 180°−90°−60° = 30°.
По властивості катета, який лежить напроти кута 30°, гіпотенуза трикутника буде рівна:
BD = 2*DC = 2*10 = 20 (cm)
Знайдемо інший катет за т. Піфагора:
Підставимо значення у формулу площі прямокутника:
Відповідь: Площа прямокутника рівна 100√3 см² або приблизно 173,2 см².