Поделитесь своими знаниями, ответьте на вопрос:
5. При решении этой головоломки не разрешается де- лать какие-либо рисунки и манипулировать объекта- ми. У нас есть 10 квадратных карточек со сторонами 10, 9, 8, 7, ..., І. Карточки, стороны которых чётны, чёрного цвета, а остальные белого. Выложим на стол самую большую карточку, т. е. чёрную, со сторо- ной 10. Затем на неё положим карточку со стороной 9, но не по центру, а как показано на рисунке 138, а (в ле- вом верхнем углу На неё (в левый нижний угол) по- ложим чёрную карточку со стороной 8 (рис. 138, б). Потом на неё кладём следующую по размеру карточку (в правый нижний угол). Продол- жаем далее этот процесс, причём положения карточек закручивают- ся внутрь против часовой стрелки. Какой чёрно-белый рисунок полу- Чится после того, как мы выложим последнюю карточку? Дайте пол- б) ное описание этого рисунка. Мож- но проверить себя, вырезав десять нс. 138 таких квадратов или нарисовать их в тетради,
ответ:Имеется есть 10 квадратных карточек, стороны которых равны соответственно 10 единиц, 9, 8 и т.д. до 1 единицы. Карточки с четными сторонами, черные, а остальные карточки белые. Положим на стол самую большую карточку (это черная карточка со стороной 10 единиц). Потом на нее (так, чтобы она лежала в левом верхнем углу черной карточки) положим белую карточку со стороной 9 единиц (см. рис. а). Затем на нее (в левый нижний угол) положим черную карточку со стороной 8 (рис. б). На нее (в правый нижний угол) кладем следующую по размеру карточку. Продолжим этот процесс далее, причем положения карточек как бы “закручиваются’’ внутрь против часовой стрелки. Вопрос: какой рисунок получится после выкладывания последней карточки?
Немного отвлечемся от задачек, чтобы вы сразу не бросались читать решения, а немного сами подумали над ними. Впрочем, как всегда ;) .
Стивен Барр — американский писатель и любитель математики. К математике Барр обратился довольно поздно. Он заинтересовался задачами моделирования сложных поверхностей, что и привело к тому, что он начал ей заниматься. Его интерес подерживал Мартин Гарднер. В США Барр издал три книги, которые имели довольно большой успех, возможно, даже больший, чем его художественные произведения.
А теперь приведу решения задач.
1. Произведение в знаменателе — это разность квадратов:
\[1234567890\cdot 1234567892=(1234567891-1)\cdot(1234567891+1)=1234567891^2-1,\]
откуда знаменатель сразу находится — он равен 1. Соответственно, вся дробь равна числителю, и это 1234567890.
2. Получится черный квадрат, на котором расположена белая спираль, состоящая из квадратиков, которая закручивается внутрь по часовой стрелке:
Объяснение: