Дано: А(4; 0), B(12; -2), С(5; -9 Для треугольника АВС найди- те: 1) его периметр; 2) длину медианы АN; 3) координаты центра описан-ной окружности и ее радиуса.
Так как треугольник MBC - равнобедренный(BM = BC), то углы при основании MC равны и угол BCM = BMC = 78.Треугольник AKM = BKM по третьему признаку равенства треугольников так как MK - общая, а
AK = BK и AM = MB по условию, тогда из равенства этих треугольников следует что угол AMK = BMK и угол AMB = 180 - BMC = 180 - 78 = 102.(угол BMC смежный с углом AMB, а по свойству смежных углов их сумма 180 откуда AMB + BMC = 180).Так как AMB = AMK + BMK (AMK = BMK по равенству треугольников AKM = BKM) . AMB = 2AMK = 2BMK и из этого равенства следует что угол AMB = AMB / 2 = 102 / 2 = 51.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано: А(4; 0), B(12; -2), С(5; -9 Для треугольника АВС найди- те: 1) его периметр; 2) длину медианы АN; 3) координаты центра описан-ной окружности и ее радиуса.
AMB = 51
Объяснение:
Так как треугольник MBC - равнобедренный(BM = BC), то углы при основании MC равны и угол BCM = BMC = 78.Треугольник AKM = BKM по третьему признаку равенства треугольников так как MK - общая, а
AK = BK и AM = MB по условию, тогда из равенства этих треугольников следует что угол AMK = BMK и угол AMB = 180 - BMC = 180 - 78 = 102.(угол BMC смежный с углом AMB, а по свойству смежных углов их сумма 180 откуда AMB + BMC = 180).Так как AMB = AMK + BMK (AMK = BMK по равенству треугольников AKM = BKM) . AMB = 2AMK = 2BMK и из этого равенства следует что угол AMB = AMB / 2 = 102 / 2 = 51.