Поделитесь своими знаниями, ответьте на вопрос:
На плоскости расположен пятиугольник ABCDE такой, что ∠ACD=∠ADC=70∘, ∠ABD=50∘, ∠CBD=20∘, ∠AEC=40∘, ∠CED=10∘. При инверсии с центром в точке A точки B, C, D, E переходят в точки B′, C′, D′, E′. Выберите все равнобедренные треугольники.
1) Рассмотрим треугольник АОВ прямоугольный
(т.к. по свойству ромба диагонали пересекаются под прямым углом)
Высота, выходящая из прямого угла треугольника, делит этот треугольник на подобные треугольники!
следует треугольник ОКВ подобен АОВ! следует КВ/OB=OK/OA
(OB=OД=8),
мы можем найти KB из треугольника OKB (по т.Пифагора)
KB"2=64-48=16; KB=4
(подставим все значения и найдём OA):
4/8=4 корня из 3/OA
ОА = 4 корня из 3*8/4=8 корней из 3
AC=2AO=16 корням из 3
из треугольника АОВ найдём AB = корень из (64+192)=корень из 256 = 16