ГЕОМЕТРИЯ 10 КЛАСС Боковые ребра треугольной пирамиды взаимно перпендикулярны, а их длины равны a. 1. Постройте угол наклона боковой грани пирамиды к плоскости основания и обоснуйте построение 2. Найдите косинус данного угла
Пирамида правильная, значит в основании лежит правильный треугольник, а основание высоты пирамиды SO лежит в центре треугольника О. В правильном треугольнике высота его делится точкой О на отрезки в отношении 2:1, считая от вершины (по свойству медиан, а высота - это и медиана в правильном треугольнике). В прямоугольном треугольнике АSO АО/АS=Cos(<SAO). Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6. Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9. ответ: высота основания пирамиды равна 9.
В прямоугольном треугольнике АSO АО/АS=Cos(<SAO).
Синус этого угла нам дан. Найдем косинус. CosA=√(1-0,8²)=0,6.
Тогда АО=СosA*AS=0,6*10=6. Это 2/3 искомой высоты. Искомая высота равна 6*3/2=9.
ответ: высота основания пирамиды равна 9.