для начала вспомним, что тупой угол - это угол с градусной мерой больше 90° и меньше 180°. из одной точки можно пустить три луча, которые между собой образуют 3 тупых угла. пустим 4-й луч вблизи одного из трёх лучей, у нас добавится дополнительно 2 тупых угла. 5-й луч пустим вблизи второго из числа первых трёх, дополнительно образуются 3 тупых угла. наконец, пускаем 6-й луч вблизи третьего, получив дополнительно 4 тупых угла. у нас будет получаться как бы три пучка близко расположенных лучей в каждом пучке. считаем сколько получилось тупых углов после к первым трём лучам ещё трёх лучей. 3 луча было, плюс 2, плюс 3 и плюс 4, всего 12 лучей. итак, для 3-х лучей - 3 тупых угла; для 6 лучей - 12 тупых углов. рассуждаем аналогично, добавляя по очереди ещё 3 луча. добавятся сначало 4 угла, затем 5 и, наконец, 6; т.е. всего добавится 15 тупых углов. а всего для 9 лучей будет 27 тупых углов. точно также, считая для 12 лучей, получим дополнительно 6+7+8 = 21 тупых угла, а всего - 48. можно было бы и далее продолжать таким способом, но мы замечаем закономерность. пусть а1 = 3 - это первый член последовательности. используя предыдущее значение (рекуррентно), можно вычислить следующее значение по формуле: , где n - число лучей кратное 3. пробуем вычислить по этой формуле: итак, ответ найден. для 27 лучей возможно максимум 243 тупых угла. так считать долго, можно увидеть формулу для прямого расчёта: по этой формуле можно считать для любого количества лучей, кратное трём.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренный треугольник с основанием 10 см и боковой стороной 5 корень 2 см вписан квадрат так, что две его вершины лежат на основании, а другие две вершины на боковых сторонах. найдите сторону квадрата
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас