Даны середины сторон треугольника АВС с координатами К(-2;2), L(0;7), М(4;-1).
Треугольник KLM подобен АВС с к = 1/2. Поэтому площадь АВС равна четырём площадям треугольника KLM.
Можно по разности координат точек найти длины сторон треугольника KLM, затем по формуле Герона найти площадь KLM.
Но можно поступить проще: есть формула определения площади треугольника по координатам вершин.
Площадь треугольника KLM равна:
S =(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)|.
Подставив координаты точек, находим: S(KLM) = 18 кв.ед.
Отсюда ответ: S(АВС) = 18*4 = 72 кв.ед.
Объяснение:
Отношение площади боковой поверхности призмы к боковой поверхности вписанного цилиндра:
1
Поскольку половина периметра основания — полупериметр,
2
Таким образом, если цилиндр вписан в призму, отношение площади боковой поверхности призмы к боковой поверхности цилиндра равно отношению объема призмы к объему вписанного цилиндра. В частности, отношение площади боковой поверхности правильной треугольной призмы к площади боковой поверхности вписанного цилиндра
3
Отношение боковой поверхности правильной четырехугольной призмы к боковой поверхности вписанного цилиндра
4
Отношение боковой поверхности правильной шестиугольной призмы к боковой поверхности вписанного цилиндра
5
При решении задач, в которых цилиндр вписан в призму, можно рассматривать часть сечения комбинации тел плоскостью, проходящей через ось цилиндра. Для прямой призмы это сечение — прямоугольник, стороны которого равны радиусу цилиндра и высоте цилиндра. Например, AA1O1O: AA1=H, AO=r.
Поделитесь своими знаниями, ответьте на вопрос:
Впараболу с параметром, равным p , вписан равносторонний треугольник abc . одна вершина треугольника совпадает с вершиной параболы. найдите сторону треугольника.
по-видимому, речь идет о канонической форме уравнения параболы
y = 2*p*x^2;
пусть координата одной из вершин (x, y), тогда сторона треугольника равна 2*х, и из теоремы пифагора
x^2 + y^2 = (2*x)^2;
y^2 = 3*x^2;
(2*p)^2*x^4 = 3*x^2;
x^2 = 3/(2*p)^2;
x = √3/(2*p);
сторона треугольника равна √3/р