Пересекающиеся прямые А₁В₁ и А₂В₂ задают плоскость, которая пересекает плоскости α и β по прямым А₁А₂ и В₁В₂, значит
А₁А₂ ║ В₁В₂.
Тогда ∠МВ₁В₂ = ∠МА₁А₂ как накрест лежащие при пересечении параллельных прямых А₁А₂ и В₁В₂ секущей А₁В₁,
∠В₁МВ₂ = ∠А₁МА₂ как вертикальные, значит
ΔВ₁МВ₂ подобен ΔА₁МА₂ по двум углам.
МВ₂ = А₂В₂ - МА₂ = 10 - 4 = 6 см
\dfrac{A_{1}A_{2}}{B_{1}B_{2}}=\dfrac{MA_{2}}{MB_{2}}
B
1
B
2
A
1
A2
=
MB
2
MA
2
Пусть А₁А₂ = х, тогда В₁В₂ = х + 1,
\dfrac{x}{x+1}=\dfrac{4}{6}
x+1
x
=
6
4
6x = 4(x + 1)
6x = 4x + 4
2x = 4
x = 2
А₁А₂ = 2 см
Поделитесь своими знаниями, ответьте на вопрос:
Восновании прямой призмы авса1в1с1 лежит прямоугольный треугольник авс, угол с=90 гр, ас=4, вс=3, через ас и вершину в1 проведена плоскость, угол в1ас=60 гр. найдите площадь боковой поверхности призмы
1. ответ 3а, во вложении пояснения.
2. стороны в 15 см не могут быть боковыми сторонами, иначе 15+15<40 не выполняется неравенство треугольника, и значит, основание 15, а две боковые стороны по 40 см,
периметр подобного исходного треугольника равен 40+40+15=95, а периметр подобного 190, что в 2 раза больше , значит, каждая сторона подобного в два раза больше исходного. и тогда его стороны 15*2=30/см/, а две другие стороны по 40*2=80 см.
ответ 30см, 80 см, 80 см.
3. ответ (16+16√3) смво вложении пояснения.