треугольнике ABC со сторонами AB=2 см, BC=3 см и AC=3 см проведена биссектриса BM. Найдите длины отрезков AM и MC.
№2 В треугольнике MNKизвестны длины сторон MN=4 см,NK=5 см, NP — биссектриса, а разность длин отрезковMP и PKравна 0,5 см. Найдите MPи PK.
№3 треугольнике DEP проведена биссектрисаEK. Найдите стороныDE и EP,если DK=3 см, KP=4 см, а периметр треугольника DEP равен 21 см.
№4 В треугольнике ABC: BC-AB=3 см, биссектриса BD делит сторону AC на отрезки AD=2 см и DC=3 см. Найдите длины сторон AB и BC
№6 Периметр треугольника CDE равен 55 см. В этот треугольник вписан ромб DMFN так, что вершиныM,F и N лежат соответственно на сторонах CD,CE и DE. Найдите стороны CB и DE, если CF=8 см;EF=12 см. В прямоугольном треугольнике проведена биссектриса острого угла. Известно что эта биссектриса делит противолежащий катет на отрезки 4 см и 5 см. Найдите площадь прямоугольного треугольника.
Точка O на гипотенузе равноудалена от двух катетов прямоугольного треугольника и делит
1) Пусть АВСD - трапеция, Вс-4 дм, AD-25 дм, АВ-20 дм, CD313 дм. Площадь трапеции можно найти по формуле: S-12(BC+AD)'h. 2) Опустим высоты һ%3DВЕ-CF. ДАЕВ и ДDFC -прямоугольные. Обозначим АЕ-х, тогда FD-25-(x+4)-21-х. Из ДАЕВ по т.Пифагора находим высоту h*-ВЕ?-AВ-АЕ?-202-x?. Из ДDFC по т.Пифагора находим высоту h?-CF2-CD-FD?-132-(21-х)2. Так как высоты равные, приравниваем полученные выражения и решаем уравнение: 202x-137-(21-х)3; 400-x-169-441+42х-x?3; 42х-672; X-16. Находим высоту трапеции: h-V(202-16?)-V(400-256)-v144-12 (дм). 3) S-1/2(BC+AD)"'h-1/2(4+25)"12-6'29-174 (дм?). ответ: 174 дм?.
Поделитесь своими знаниями, ответьте на вопрос:
Cрочно отрезки op и km пересекаются в точке c, а отрезки kp и mo равны и параллельны. докажите, что угол kpc = углу moc
и так.. картинка, как песочные часы. углы крс и мос являются накрест лежащими при секущей (op) => по признаку параллельности они равны