Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.
Признак равенства прямоугольных треугольников по двум катетам
priznak ravenstva pryamougolnyih treugolnikov 1
Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе
priznak ravenstva pryamougolnyih treugolnikov 2
Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства по гипотенузе и острому углу
priznak ravenstva pryamougolnyih treugolnikov 3
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу
priznak ravenstva pryamougolnyih treugolnikov 4
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Объяснение:
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
Поделитесь своими знаниями, ответьте на вопрос:
Найти диагонали равнобедренной трапеции основания которой равны 6 и 4 а боковая сторона 5
опустим две высоты вм и ск к нижнему основанию ад.тогда отрезок мк=вс=4. маленькие отрезки ам=кд=1(т.к. ад=6) мы можем найти высоты по теореме пифагора: вм^2=5^2-1^2=24; вм=ск= корень из 24 или 2 умножить на корень из 6. рассмотрим треугольник аск он прямоугольный, в нем ак=5 и ск=2√6. можем найти по т. пифагора ас^2=5^2+ (2√6)^2=49 ; ас=7