пусть в равнобедренном δ авс угол с при вершине равен 24⁰ => углы при основании будут равны (180⁰ - 24⁰)/2 = 78⁰.
в другом равнобедренном δ а₁в₁с₁ угол при основании равен 78⁰ , значит угол при вершине равен 180⁰ - 2*78⁰ = 180⁰ - 156⁰ = 24⁰.
т.о. в трегольниках δ авс и δ а₁в₁с₁ углы соответственно равны => по признаку подобия треугольников δ авс и δ а₁в₁с₁ подобны.
дано: авсd = равнобедренная трапеция , вс = 8 см, аd = 14 см.
угол в = 120 градусов.
найти: ав и сd - боковые стороны.
решение: т.к. авсd - равноб. трапеция, а в ней углы при основании равны и сумма всех ее углов = 360 градусов, значит угол а = 180 - 120 = 60 градусов. соответственно и угол d = 60 градусов( по теореме о равн. трапеции).
из вершин в провести высоту вн, а из вершины с провести высоту см к стороне аd. вн = см, как расположенные между параллельными прямыми ав и сd( ведь авсd - равноб. трапеция.)
вс = нм, т.к нвсм - это прямоугольник, потому что угол н, в, с, и м = 90 градусов( так. как вн и см - высоты.)
рассмотрим треугольники вна и смd - прямоугольные.
они равны, т.к
1) ав = сd( по условию)
2) угол а = угол в.
из равенства треуг. следует равенство их элементов - ан = мd.
значит, ан=мd=3 см, т.к ан+мd= 6 см, а нм = 8 см, и ан+мd + нм = 14см или = аd.
в треуг. вна и смd угол в и с равны 30 градусов( по теореме о сумме остр. углолв в прямоуг. треугольниках.)
катет, лежащий против угла в 30 градусов, равен половине гипотенузы.
тогда, если ан = 3 см, то ав = 2*3= 6 см. т. к. ав = сd, то сd = 6 см. ч.т .д.
подробнее - на -
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол c равен 90° ac=5 см, ab=13 см.найдите sina cosa tga sinb cosb tgb
по теореме пифагора:
синус - отношение противолежащего катета к гипотенузе, то есть
sin a = bc/ab = 12/13
косинус - отношение прилежащего катета к гипотенузе, то есть:
cos a = ac/ab = 5/13
тангенс - отношение противолежащего катета к прилежащему катету
tg a = bc/ac = 12/5
аналогично
sin b = ac/ab = 12/13
cos b = bc/ab = 5/13
tg b = ac/bc = 5/12