1). на произвольной прямой отложить отрезок, равный стороне ав. обозначить на концах отрезка вершины треугольника: точки а и в.
2) из точки а как из центра раствором циркуля радиусом, равным длине стороны ас, начертить дугу.
3) из т.в как из центра раствором циркуля радиусом, равным длине стороны вс, начертить дугу до пересечения с первой дугой.
точка пересечения дуг – вершина с искомого треугольника. соединив а и с, в и с, получим треугольник со сторонами заданной длины.
б) построение срединного перпендикулярна стандартное.
из т.а и т.в как из центров провести полуокружности произвольного, но равного радиуса несколько больше половины ав так, чтобы они пересеклись по обе стороны от ав (т.к и т. н).
точки пересечения к и н этих полуокружностей соединить.
соединить а и н, в и н. четырехугольник аквн - ромб ( стороны равны взятому радиусу). диагонали ромба пересекаются под прямым углом и точкой пересечения делятся пополам. =>
ам=мв и км перпендикулярно ав.
км - срединный перпендикуляр к стороне ам.
точно так же делят отрезок пополам.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите высоту треугольной пирамиды, если все ее боковые ребра по корень квадратный из 40, а стороны основания равны 10см, 10см, 12см.
так как боковые ребра равны, то вершина пирамиды проецируется в центр описанной возле основания окружности.
радиус окружности, описанной возле равнобедренного треугольника со сторонами 10, 10, 15 равен:
10*10*15/(4*sqrt(16*6*6*4)) = 7 13/16.
это число больше, чем квадратный корень из 40, что нарушает неравенство треугольника. , пересмотрите условие и сообщите мне в личку. заранее .