...
Объяснение:
ПУсть угол 1=39°, тогда угол 3=141°.
Угол 2(который обозначен красной ручкой) и угол 3 вертикальные. Значит угол 2=углу 3=141°
Если прямые б и е параллельные, то отсюда следует, что угол 1 и угол 2 односторонние углы и их сумма должна равняться 180°, если же сумма односторонних углов не будет равна 180°, то прямые не параллельные.
Проверка:
Угол 1+угол 2=180°; 39°+141°=180°; 180°=180°.
Значит эти прямые параллельные.
К этому я прикрепила рисунок, чтобы вы не перепутались где какие углы и решение тоже там.
• На данном рисунке 6 - это длина рёбра основания, 4 - высота и одновременно медиана (так как исходный треугольник в основании - равнобедренный), половина равна 3, рассмотрим один из треугольников, которые получаются разделением медианы (равной 4), по обратной теореме Пифагора - треугольник прямоугольный, сторона равна:
a = √(4² + 3²) = √25 = 5 (а - боковая сторона равнобедренного треугольника, лежащего в основании)
• Рассмотрим треугольник, в котором угол равен 60°, а нижняя часть, как мы нашли, равна 5, сам треугольник прямоугольный, поэтому:
tg60° = x/5
x - боковое ребро
x = tg60° • 5 = 5√3
• Sполн. = Sбок. + 2Sосн.
Sбок. = Pосн. • h = (5+5+6) • 5√3 = 16 • 5√3 = 80√3
Sосн. = 6 • 4 • ½ = 12
Sполн. = 80√3 + 12
Поделитесь своими знаниями, ответьте на вопрос:
Площадь треугольника авс = 140. на стороне ас взята такая точка м, что ам: см=3: 2 . биссиктрисса аl пересекает прямую вм в точке к. мк: вк=1: 3. площадь мскl-?
23 из теста 2 для гиа по .
площадь треугольника abc равна 140. на стороне ac взята такая точка м, что am: cm=3: 2.биссектриса al пересекает прямую bm в точке k найдите площадь четырехугольника mclk, если известно, что mk: bk=1: 3
решение:
известно, что на стороне ac взята точка m так, что am: cm=3: 2. таким образом, выв видите, что сторона ac содержит 3+2=5 частей. в соответствии с этим площадь треугольника abc, равная 140, делится прямой bm на два треугольника: abm с площадью 84 и mbc с площадью 56.
здесь 140 квадратных единиц предварительно делим на 5 частей и получаем, что на одну часть приходится 28 квадратных единиц. тогда площадь треугольника abm составит 3 части, то есть 28*3=84 кв. единицы, и площадь треугольника mcb составит остальные 56 квадратных единиц (28*2=56).
теперь вспомним, что бессектриса al угла a треугольника abm делит противоположную сторону bm в точке k и сам треугольник треугольник abm на 4 части в отношении mk: bk=1: 3. в этом же отношении находятся и прилежащие стороны треугольника abm, то есть am : ab как mk : bk. иначе говоря, am составляет 1 часть и bk составляет 3 части.
аналогично названная биссектрисса al делит сторону bc и сам треугольник abc на части, пропорциональные прилежащим сторонам. нам нужно вычислить отношение сторон последнего треугольника друг к другу. в силу того, что отрезок
известно, что на стороне ac взята точка m так, что am: cm=3: 2. таким образом, выв видите, что сторона ac содержит 3+2=5 частей. в соответствии с этим площадь треугольника abc, равная 140, делится прямой bm на два треугольника: abm с площадью 84 и mbc с площадью 56.
здесь 140 квадратных единиц предварительно делим на 5 частей и получаем, что на одну часть приходится 28 квадратных единиц. тогда площадь треугольника abm составит 3 части, то есть 28*3=84 кв. единицы, и площадь треугольника mcb составит остальные 56 квадратных единиц (28*2=56).
теперь вспомним, что бессектриса al угла a треугольника abm делит противоположную сторону bm в точке k и сам треугольник треугольник abm на 4 части в отношении mk: bk=1: 3. в этом же отношении находятся и прилежащие стороны треугольника abm, то есть am : ab как mk : bk. иначе говоря, am составляет 1 часть и bk составляет 3 части.
аналогично названная биссектрисса al делит сторону bc и сам треугольник abc на части, пропорциональные прилежащим сторонам. нам нужно вычислить отношение сторон последнего треугольника друг к другу. в силу того, что отрезок am составлял по условию 3 части, а теперь составляет одну часть отрезок ab теперь составляет 9 частей, а отрезок mc содержит 2 части, как дано по условию . тогда сторона ac составляет 5 частей и всего ab+ac = 3 + 2 = 14 частей. легко подсчитать, что на 1 часть приходится 140 : 14 = 10 квадратных единиц площади. поэтому площадь треугольника alc будет равна 10*5=50 кв. единиц, и площадь треукгольника alb будет равна 90 кв. ед. площадь треугольника akm равна 84 : 4 = 21 (кв. ед.) тогда искомая площадь четырехугольника mclk равна 50 - 21 = 29 (кв. единиц). решена !