где D - это греческая буква "Дельта"
Пошаговое объяснение:
Вычисляете определитель системы D состоящий из коэффициентов при неизвестных:
3 -2 -5
5 -2 -3= (3*(-2)*1+5*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+3*(-3)*1+5*(-2)*1)=(-25)-(-9)=-16
1 1 1
D = -16
Затем вычисляете определитель D1, который отличается от D тем, что первый столбец заменен на столбец из свободных элементов:
0 -2 -5
0 -2 -3 = (0*(-2)*1+0*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+0*(-3)*1+0*(-2)*1)=(6)-(10)=-4
1 1 1
D1 = -4
Далее вычисляете определитель D2, отличающийся от D тем, что второй столбец заменен на столбец свободных элементов.
3 0 -5
5 0 -3 = (3*0*1+5*(-5)*1+0*(-3)*1)-((-5)*0*1+3*(-3)*1+0*5*1)=(-25)-(-9)=-16
1 1 1
D2 = -16
Далее вычисляете определитель D3, отличающийся от D тем, что третий столбец заменен на столбец свободных элементов.
3 -2 0
5 -2 0 = (3*(-2)*1+5*0*1+(-2)*0*1)-(0*(-2)*1+3*0*1+5*(-2)*1)=(-6)-(-10)=4
1 1 1
D3 = 4
Окончательно:
x = D1/D; y = D2/D; z = D3/D.
x = -4 / -16 = ¼
y = -16 / -16 = 1
z = 4 / -16 = -¼
где D - это греческая буква "Дельта"
Основные свойства треугольников. В любом треугольнике:
Против большей стороны лежит больший угол, и наоборот.
Против равных сторон лежат равные углы, и наоборот. (В частности, все углы в равностороннем треугольнике равны.)
Сумма углов треугольника равна 180 ° (Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60 °).
Продолжая одну из сторон треугольника (AВ), получаем внешний угол Θ.
Любая сторона треугольника меньше суммы двух других сторон и больше их разности:
a < b + c,
a > b – c;
b < a + c,
b > a – c;
c < a + b,
c > a – b.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Что вы знаете о казаках и запорожской сечи (5 предложений) будет 6 предложений , добавлю 5 !