а) да; б) нет; в) 972
Пошаговое объяснение:
а) Пусть геометрическая прогрессия имеет знаменатель . Тогда получим последовательность . Число 686 может быть записано на доске.
б) Заметим, что знаменатель прогрессии q не может быть иррациональным числом: в противном случае второй член прогрессии b₂ = 128q — иррациональное число, что противоречит условию. Значит, q — рациональное число.
Предположим, что 496 является n-ным членом последовательности. Тогда . Поскольку 31 — простое число, оно не является степенью какого-либо другого числа. Значит, n = 1, . Тогда получаем геометрическую прогрессию — третий член последовательности не трёхзначный, что противоречит условию. Значит, прогрессии с членом 496 не существует.
в) Пусть A — наибольший возможный член геометрической прогрессии, по условию A < 1000. Тогда . Число является степенью некоторого рационального числа, значит, , где k — некоторое целое число из промежутка [0, 7], a — положительное нечётное число. Число представимо в таком виде, поскольку на можно сократить, в знаменателе останется , далее дробь несократима и является степенью n = 7 - k числа q: . Значит, .
Переберём все k от 0 до 7:
k = 0: . k = 1: . k = 2: . k = 3: . k = 4: . k = 5: . k = 6: k = 7: — верно, A = 128.Наибольшее значение A = 972. Покажем, что оно достигается. Пусть . Тогда
Таким образом, наибольшее число, которое могла выписать Даша — 972.
Пошаговое объяснение:
1)20x=12
x=12/20=0,6
ответ`0,6
2)x-8-2x+7=15
-x=16
x=-16
ответ`-16
3)6x+5=7+x+5x
5=7
x∈∅
4)3x+6=3x+3+3
6=6
x∈R
5)x = количесво изделий 1й бригады
y = количесво изделий 2й бригады
z = количесво изделий 3й бригады
x + y + z = 590
y = 4x
z = y + x
подставляем в первую формулу вместо z:
x + y + x + y = 590
подставляем в первую формулу вместо y:
x + 4x + x + 4x = 590
10x = 590
x = 59
y = 59 * 4 = 236
z = 59 * 4 + 59 = 295
ответ` 1 бригада=59
2 бригада=236
3 бригада=295
Поделитесь своими знаниями, ответьте на вопрос:
Найдите корни уравнения ноль равно 1 6 минус икс в скобках минус скобка открывается икс плюс 1 3 скобка плюс два икс минус одна третья