Bsn1704
?>

Мери поппенс отправилась за покупками в четверть двенадцатого а вернулась домой в двенадцать часов пятнадцать минут сколько времени она ходила за покупками ? написать решение

Математика

Ответы

lider-mpl550
Если я не ошибаюсь то 1 час. Вышла в 11:15, а ПРИШЛА в 12:15 как-то  так)
eleniloy26

y''+2y'+5y=6e^{-x}\cos2x

Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.

y_{on}=Y_{oo}+\overline{y}_{cn}

Составим однородное дифференциальное уравнение, соответствующее данному неоднородному:

y''+2y'+5y=0

Составим характеристическое уравнение и решим его:

\lambda^2+2\lambda+5=0

D_1=1^2-1\cdot5=-4

\lambda=-1\pm2i

Общее решение однородного уравнения:

Y=e^{-x}(C_1\cos2x+C_2\sin2x)

Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:

\overline{y}=(Ae^{-x}\sin2x+Be^{-x}\cos2x)\cdot x=xe^{-x}(A\sin2x+B\cos2x)

Находим первую производную:

\overline{y}'=x'\cdot e^{-x}(A\sin2x+B\cos2x)+x(e^{-x})'(A\sin2x+B\cos2x)+

+x\cdot e^{-x}(A\sin2x+B\cos2x)'=

=e^{-x}(A\sin2x+B\cos2x)+x(-e^{-x})(A\sin2x+B\cos2x)+

+xe^{-x}(2A\cos2x-2B\sin2x)=

=e^{-x}(A\sin2x+B\cos2x)-xe^{-x}(A\sin2x+B\cos2x)+

+xe^{-x}(2A\cos2x-2B\sin2x)=

=(A-Ax-2Bx)e^{-x}\sin2x+(B-Bx+2Ax)e^{-x}\cos2x

Находим вторую производную:

\overline{y}''=(A-Ax-2Bx)'e^{-x}\sin2x+(B-Bx+2Ax)'e^{-x}\cos2x+

+(A-Ax-2Bx)(e^{-x})'\sin2x+(B-Bx+2Ax)(e^{-x})'\cos2x+

+(A-Ax-2Bx)e^{-x}(\sin2x)'+(B-Bx+2Ax)e^{-x}(\cos2x)'=

=(-A-2B)e^{-x}\sin2x+(-B+2A)e^{-x}\cos2x+

+(A-Ax-2Bx)(-e^{-x})\sin2x+(B-Bx+2Ax)(-e^{-x})\cos2x+

+(A-Ax-2Bx)e^{-x}(2\cos2x)+(B-Bx+2Ax)e^{-x}(-2\sin2x)=

=(-A-2B)e^{-x}\sin2x+(-B+2A)e^{-x}\cos2x+

+(-A+Ax+2Bx)e^{-x}\sin2x+(-B+Bx-2Ax)e^{-x}\cos2x+

+(2A-2Ax-4Bx)e^{-x}\cos2x+(-2B+2Bx-4Ax)e^{-x}\sin2x=

=(-2A-4B-3Ax+4Bx)e^{-x}\sin2x+(4A-2B-4Ax-3Bx)e^{-x}\cos2x

Подставляем в исходное уравнение:

(-2A-4B-3Ax+4Bx)e^{-x}\sin2x+(4A-2B-4Ax-3Bx)e^{-x}\cos2x+

+2(A-Ax-2Bx)e^{-x}\sin2x+2(B-Bx+2Ax)e^{-x}\cos2x+

+5xe^{-x}(A\sin2x+B\cos2x)=6e^{-x}\cos2x

(-2A-4B-3Ax+4Bx)\sin2x+(4A-2B-4Ax-3Bx)\cos2x+

+(2A-2Ax-4Bx)\sin2x+(2B-2Bx+4Ax)\cos2x+

+5Ax\sin2x+5Bx\cos2x=6\cos2x

(-2A-4B-3Ax+4Bx+2A-2Ax-4Bx+5Ax)\sin2x+

+(4A-2B-4Ax-3Bx+2B-2Bx+4Ax+5Bx)\cos2x=6\cos2x

-4B\sin2x+4A\cos2x=6\cos2x

-2B\sin2x+2A\cos2x=3\cos2x

Условие равенства левой и правой частей:

\begin{cases} -2B=0\\ 2A=3\end{cases} \Rightarrow \begin{cases} B=0\\ A=\dfrac{3}{2} \end{cases}

Частное решение данного неоднородного уравнения:

\overline{y}=\dfrac{3}{2} xe^{-x}\sin2x

Общее решение данного неоднородного уравнения:

y=e^{-x}(C_1\cos2x+C_2\sin2x)+\dfrac{3}{2} xe^{-x}\sin2x

Оксана Анна

y''+2y'+5y=6e^{-x}\cos2x

Общее решение неоднородного дифференциального уравнения равно сумме общего решения однородного дифференциального уравнения, соответствующего данному неоднородному, и частного решения неоднородного дифференциального уравнения.

y_{on}=Y_{oo}+\overline{y}_{cn}

Составим однородное дифференциальное уравнение, соответствующее данному неоднородному:

y''+2y'+5y=0

Составим характеристическое уравнение и решим его:

\lambda^2+2\lambda+5=0

D_1=1^2-1\cdot5=-4

\lambda=-1\pm2i

Общее решение однородного уравнения:

Y=e^{-x}(C_1\cos2x+C_2\sin2x)

Запишем в общем виде частное решение данного неоднородного уравнения, учитывая, что в правой части стоит произведение экспоненты и на косинус, а также то, что степень экспоненты и выражение под знаком косинуса совпадают с соответствующими выражениями, полученными при решении однородного уравнения:

\overline{y}=(Ae^{-x}\sin2x+Be^{-x}\cos2x)\cdot x=xe^{-x}(A\sin2x+B\cos2x)

Находим первую производную:

\overline{y}'=x'\cdot e^{-x}(A\sin2x+B\cos2x)+x(e^{-x})'(A\sin2x+B\cos2x)+

+x\cdot e^{-x}(A\sin2x+B\cos2x)'=

=e^{-x}(A\sin2x+B\cos2x)+x(-e^{-x})(A\sin2x+B\cos2x)+

+xe^{-x}(2A\cos2x-2B\sin2x)=

=e^{-x}(A\sin2x+B\cos2x)-xe^{-x}(A\sin2x+B\cos2x)+

+xe^{-x}(2A\cos2x-2B\sin2x)=

=(A-Ax-2Bx)e^{-x}\sin2x+(B-Bx+2Ax)e^{-x}\cos2x

Находим вторую производную:

\overline{y}''=(A-Ax-2Bx)'e^{-x}\sin2x+(B-Bx+2Ax)'e^{-x}\cos2x+

+(A-Ax-2Bx)(e^{-x})'\sin2x+(B-Bx+2Ax)(e^{-x})'\cos2x+

+(A-Ax-2Bx)e^{-x}(\sin2x)'+(B-Bx+2Ax)e^{-x}(\cos2x)'=

=(-A-2B)e^{-x}\sin2x+(-B+2A)e^{-x}\cos2x+

+(A-Ax-2Bx)(-e^{-x})\sin2x+(B-Bx+2Ax)(-e^{-x})\cos2x+

+(A-Ax-2Bx)e^{-x}(2\cos2x)+(B-Bx+2Ax)e^{-x}(-2\sin2x)=

=(-A-2B)e^{-x}\sin2x+(-B+2A)e^{-x}\cos2x+

+(-A+Ax+2Bx)e^{-x}\sin2x+(-B+Bx-2Ax)e^{-x}\cos2x+

+(2A-2Ax-4Bx)e^{-x}\cos2x+(-2B+2Bx-4Ax)e^{-x}\sin2x=

=(-2A-4B-3Ax+4Bx)e^{-x}\sin2x+(4A-2B-4Ax-3Bx)e^{-x}\cos2x

Подставляем в исходное уравнение:

(-2A-4B-3Ax+4Bx)e^{-x}\sin2x+(4A-2B-4Ax-3Bx)e^{-x}\cos2x+

+2(A-Ax-2Bx)e^{-x}\sin2x+2(B-Bx+2Ax)e^{-x}\cos2x+

+5xe^{-x}(A\sin2x+B\cos2x)=6e^{-x}\cos2x

(-2A-4B-3Ax+4Bx)\sin2x+(4A-2B-4Ax-3Bx)\cos2x+

+(2A-2Ax-4Bx)\sin2x+(2B-2Bx+4Ax)\cos2x+

+5Ax\sin2x+5Bx\cos2x=6\cos2x

(-2A-4B-3Ax+4Bx+2A-2Ax-4Bx+5Ax)\sin2x+

+(4A-2B-4Ax-3Bx+2B-2Bx+4Ax+5Bx)\cos2x=6\cos2x

-4B\sin2x+4A\cos2x=6\cos2x

-2B\sin2x+2A\cos2x=3\cos2x

Условие равенства левой и правой частей:

\begin{cases} -2B=0\\ 2A=3\end{cases} \Rightarrow \begin{cases} B=0\\ A=\dfrac{3}{2} \end{cases}

Частное решение данного неоднородного уравнения:

\overline{y}=\dfrac{3}{2} xe^{-x}\sin2x

Общее решение данного неоднородного уравнения:

y=e^{-x}(C_1\cos2x+C_2\sin2x)+\dfrac{3}{2} xe^{-x}\sin2x

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Мери поппенс отправилась за покупками в четверть двенадцатого а вернулась домой в двенадцать часов пятнадцать минут сколько времени она ходила за покупками ? написать решение
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

natalia-bokareva
mitin228133770
bal4shovser16
dmitzu8594
amxvel7596
mvolkov8
best00
Kuzina Sergeevna
ИвановнаВладимир1832
Vladimirovna Viktorovna
Артем Уберт
tigran87-87
andrew-lev2501
emilbadalov
edvlwork15