1)Призма – это многогранник ( рис. 79 ), две грани которой ABCDE и abcde ( основания призмы ) – равные многоугольники с соответственно параллельными сторонами, а остальные грани ( AabB, BbcC и т. д. ) - параллелограммы, плоскости которых параллельны прямой ( Aa, или Bb, или Cc и т. д. ). Параллелограммы AabB, BbcC и т. д. называются боковыми гранями; рёбра Aa, Bb, Cc и т. д. называются боковыми рёбрами. Высота призмы – это любой перпендикуляр, опущенный из любой точки основания на плоскость другого основания. В зависимости от формы многоугольника, лежащего в основании, призма может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Если боковые рёбра призмы перпендикулярны к плоскости основания, то такая призма называется прямой; в противном случае – это наклонная призма. Если в основании прямой призмы лежит правильный многоугольник, то такая призма также называется правильной. На рис. 79 показана наклонная призма. 2)Пирамида – это многогранник, у которого одна грань ( основание пирамиды ) – это произвольный многоугольник ( ABCDE, рис. 80 ), а остальные грани ( боковые грани ) – треугольники с общей вершиной S, называемой вершиной пирамиды. Перпендикуляр SO, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. В зависимости от формы многоугольника, лежащего в основании, пирамида может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Треугольная пирамида является тетраэдром ( четырёхгранником ), четырёхугольная – пятигранником и т. д. Пирамида называется правильной, если в основании лежит правильный многоугольник, а её высота падает в центр основания. Все боковые рёбра правильной пирамиды равны; все боковые грани – равнобедренные треугольники. Высота боковой грани (SF) называется апофемой правильной пирамиды.
suturinavaleriya51
25.12.2022
Вероятность появления хотя бы одного годного изделия из трех равна частному от деления количества благоприятных исходов на количество всех вариантов исхода. Для одного изделия имеем 100 исходов, из них 90 благоприятные, 9 устранимый брак и один неустранимый. На каждый из исходов для одного изделия есть 100 исходов для второго. имеем 10000 исходов. и на каждый из них еще по 100 исходов для второго изделия. Всего 1000000 исходов. Хотя бы одно годное включает в себя варианты "все три годные", "Два годных" и "одно годное". Не включает лишь вариант "Все три изделия с неустранимым браком". Для этого варианта есть 1 исход по первому изделию, один по- второму и один по третьему. Всего три исхода. Вероятность такого стечения обстоятельств = 0.01*0.01*0.01 = . ответ 100%-0.0001% = 99.9999%
2)Пирамида – это многогранник, у которого одна грань ( основание пирамиды ) – это произвольный многоугольник ( ABCDE, рис. 80 ), а остальные грани ( боковые грани ) – треугольники с общей вершиной S, называемой вершиной пирамиды. Перпендикуляр SO, опущенный из вершины пирамиды на её основание, называется высотой пирамиды. В зависимости от формы многоугольника, лежащего в основании, пирамида может быть соответственно: треугольной, четырёхугольной, пятиугольной, шестиугольной и т. д. Треугольная пирамида является тетраэдром ( четырёхгранником ), четырёхугольная – пятигранником и т. д. Пирамида называется правильной, если в основании лежит правильный многоугольник, а её высота падает в центр основания. Все боковые рёбра правильной пирамиды равны; все боковые грани – равнобедренные треугольники. Высота боковой грани (SF) называется апофемой правильной пирамиды.