Орлова
?>

Уменьши каждое из чисел 24, 36, 18, 30 на 6 раз

Математика

Ответы

valerii_Georgievna915

4; 6; 3; 5

Пошаговое объяснение:

24:6=4

36:6=6

18:6=3

30:6=5

myudanova631

ответ: 24 = 4

36 = 6

18 = 3

30 = 5

knyazev527

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

4y''+3y'-y=0

Пусть y=e^{kx}, мы получим характеристическое уравнение

4k^2+3k-1=0

k_1=-1\\ k_2=\frac{1}{4}

y_{o.o.}=C_1e^{-x}+C_2e^{\frac{x}{4}} — общее решение однородного диф. ур.

Найдём теперь частное решение. Рассмотрим функцию f(x)=5x^2+x

P_n(x)=5x^2+x отсюда n=2; \alpha =0. Сравнивая \alpha с корнями характеристического уравнения и, принимая во внимая, что \alpha =0, частное решение будем искать в виде:

\overline{y}=Ax^2+Bx+C\\ y'=2Ax+B\\ y''=2A

Подставляем в исходное дифференциальное уравнение

4\cdot 2A+3\cdot (2Ax+B)-(Ax^2+Bx+C)=5x^2+x\\ \\ 8A+6Ax+3B-Ax^2-Bx-C=5x^2+x\\ \\ -Ax^2+(6A-B)x+8A+3B-C=5x^2+x

Приравниваем коэффициенты при степени x

-A=5 откуда A=-5

6A-B=1 откуда B=-31

8A+3B-C=0 откуда C=-133

Частное решение: \overline{y}=-5x^2-31x-133

Общее решение линейного неоднородного дифференциального уравнения:

y=y_{o.o.}+\overline{y}=C_1e^{-x}+C_2e^{\frac{x}{4}}-5x^2-31x-133

taanaami75

Найдем сначала общее решение соответствующего однородного дифференциального уравнения

4y''+3y'-y=0

Пусть y=e^{kx}, мы получим характеристическое уравнение

4k^2+3k-1=0

k_1=-1\\ k_2=\frac{1}{4}

y_{o.o.}=C_1e^{-x}+C_2e^{\frac{x}{4}} — общее решение однородного диф. ур.

Найдём теперь частное решение. Рассмотрим функцию f(x)=5x^2+x

P_n(x)=5x^2+x отсюда n=2; \alpha =0. Сравнивая \alpha с корнями характеристического уравнения и, принимая во внимая, что \alpha =0, частное решение будем искать в виде:

\overline{y}=Ax^2+Bx+C\\ y'=2Ax+B\\ y''=2A

Подставляем в исходное дифференциальное уравнение

4\cdot 2A+3\cdot (2Ax+B)-(Ax^2+Bx+C)=5x^2+x\\ \\ 8A+6Ax+3B-Ax^2-Bx-C=5x^2+x\\ \\ -Ax^2+(6A-B)x+8A+3B-C=5x^2+x

Приравниваем коэффициенты при степени x

-A=5 откуда A=-5

6A-B=1 откуда B=-31

8A+3B-C=0 откуда C=-133

Частное решение: \overline{y}=-5x^2-31x-133

Общее решение линейного неоднородного дифференциального уравнения:

y=y_{o.o.}+\overline{y}=C_1e^{-x}+C_2e^{\frac{x}{4}}-5x^2-31x-133

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Уменьши каждое из чисел 24, 36, 18, 30 на 6 раз
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zaha98
nord0764
irschacha
annanudehead1426
cheremetdiana
ohussyev
Равилевич_Олеговна1496
ea-office
komplekt7
manyugina1
Vik1744184
most315
sav4ukoxana7149
Gennadievna bessonov
nikdenly