ДАНО: y(x) = x² + 2*x - 3
ИССЛЕДОВАНИЕ
1. Область определения. Непрерывная. Разрывов нет.
D(y) = (-∞;+∞) , D(y) = R.
2. Нули функции, корни квадратного уравнения.
х₁ = - 3 и х₂ = 1.
3. Интервалы знакопостоянства.
Положительна: Y>0 X∈(-∞;-3)∪(1;+∞) - вне корней.
Отрицательна: Y<0 X∈(-3;1) - между корней.
4. Поиск экстремумов по первой производная функции .
Y'(x) = 2*х + 2 = 2*(x + 1) = 0
Точка экстремума: x = - 1
5 Локальный экстремум: Ymin(-1) = - 4
6. Интервалы монотонности.
Убывает: Х∈(-∞;-1) Возрастает: Х∈(1;+∞)
7, Поиск точек перегиба по второй производной
Y"(x) = 2.
8. Вогнутая - "ложка" - Х∈(-∞;+∞).
9. Область значений: E(y)= [-4;+∞)
График на рисунке в приложении.
Поделитесь своими знаниями, ответьте на вопрос:
5 дес. +4 дес. 7 сот. + 1 сот.6 сот. + 2 сот. 9 дес. +1 дес.4 сот. +3 сот.З дес. +3 дес.
90, 800, 800, 100, 700, 60