РЕШЕНИЕ
Рисунок к задаче в приложении.
а) По оси Х - t=2, S(2) = 8 км - через 2 часа - ОТВЕТ
б) Остановка - когда расстояние не изменяется. Находим и вычисляем время.
t2 = 7, t1 = 3
Время остановки - разность координат по оси Х - времени.
Т = 7 - 3 = 4 ч - остановка - ОТВЕТ.
в) Вопрос - 4 км от дома.
Находим на оси S значение S= 4 км. Проводим горизонтальную линию параллельно оси времени. Оказалось две точки пересечения с графиком пути. Проводим вертикальные линии и находим время.
ОТВЕТ: Через 1 час - уходил и через 10 часов - возвращался.
Рисунок с решением задачи в приложении.
Пошаговое объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
B) -295-x= -11 - x=-1117C)- 2 + (2x - 3) = 0A)5) (82 - 12) -(52-33)5B) -+12
Площадь наименьшего квадрата -
Среднего -
Большего -
Диагональ меньшего квадрата обозначим за d, по формуле
Где а - сторона, находим диагональ
Первая часть "полосы" пересекает оба квадрата, поэтому обозначим её за S₁ ;
Во втором квадрате, в левом верхнем углу, можем заметить треугольник, в приложении он обозначен как KLM. Найти его гипотенузу не составит трудностей: сторона LM = 7 - 3 = 4 см; KL = 4 см, следовательно, гипотенуза (KM) равна
По упомянутому выше факту, мы видим, что "полоса" пересекает оба квадрата, значит стороны можно сложить
Нам известно две стороны параллелограмма (DM = AB), чтобы найти его площадь, нужно перемножить эти две стороны между собой и произведение умножить на синус угла между ними; так как в квадрате все углы по 90°, AB - диагональ, а значит, биссектриса, то угол между сторонами равен 45°. Значит,
Площадь второй части "полосы" обозначим за S₂;
Рассмотрим треугольник ABC:
AC = 7 + 9 = 16 см
BH - высота, = 7 см
Так как ΔABH занимает ровно половину второго квадрата, то его площадь равна
Тогда, ΔBHC = 56 - 24,5 = 31,5 см²
Рассмотрим треугольники EFG и BHC:
EF = HC (по усл.)
BH = FG (9 - 2 = 7 см)
⇒ ΔEFG = ΔBHC по 2 катетам
Из этого следует, что ΔEFG = ΔBHC = 31,5 см²
Вспоминаем, что в начале нашли площадь самого большого квадрата - 81 см²;
А значит,
Итоговая площадь всей закрашенной части -
ответ: 39 см²