Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Аналогично ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.Вот так!Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Также ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.
gorushko-tabak3
21.04.2022
Мужской род Женский род Средний род тюль фланель пальто, кофе мозоль метро, шимпанзе заросль эскимо, фламинго глушь такси, кенгуру шоссе, пони меню, кафе
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
назовите определительное местоимение, которое никогда не употребляется без прилагательного
Да
Объяснение:
Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Аналогично ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.Вот так!Начертим равные отрезки BD и AC. Пусть точка их пересечения - О.
По условию, О делит оба отрезка пополам. А так как BD=AC, то
BO=OC=OA=OD
Начертим так же стороны четырехугольника ABCD.
Надо доказать, что это прямоугольник. BD и AC - его диагонали, они же пересекающиеся прямые. Тогда пусть ∠BOA=α, ∠BOA=∠COD=α (вертикальные). ∠BOA и ∠BOC - смежные ⇒ ∠BOA + ∠BOC = 180° ⇒ ∠BOC=180°-∠BOA=180°-α
Отметим также, что ΔBOA=ΔCOD (по 2 сторонам BO=OD, CO=OA, и углу между ними ∠BOA=∠COD). Также ΔBOC=ΔDOA (BO=OD, CO=OA, ∠BOC=∠DOA).
Из этого следует (второе доказанное равенство треугольников), что ∠OBC=∠ODA, а это накрест лежащие углы при пересечении прямых BC и AD секущей BD, то есть BC║AD.
∠OBA=∠ODC (из первого доказанного равенства треугольников), а это накрест лежащие углы при пересечении прямых AB и CD секущей AC, то есть AB║CD.
Из равенств треугольников следует, что BC=AD (2-ое равенство), а AB=CD (1-ое равенство). В четырехугольнике ABCD противолежащие стороны равны и параллельны, то есть это параллелограмм. Осталось доказать, что хотя бы один угол в нем прямой (тогда найдется ещё один противополежащий равный ему угол, останутся два равных между собой угла, а так как их сумма 180° (сумма углов четырехугольника 360 и минус 2 угла по 90°), то они тоже будут по 90°).
Рассмотрим ∠ABC:
∠ABC=∠ABO+∠OBC;
из ΔOBA, который равнобедренный, углы при основании равны ∠ABO=∠BAO = (180°-α)/2=90°-α/2
из ΔOBC, который равнобедренный, углы при основании равны
∠OBC=∠OCB=(180°-(180°-α))/2=α/2
∠ABC=∠ABO+∠OBC=90°-α/2+α/2=90°, то есть в параллелограмме ABCD все 4 угла прямые, значит, это прямоугольник.