Якщо число x є розв'язком як нерівності x>−4, так і нерівності х<5, тоді воно є розв'язком подвійної нерівності −4<x<5.
Множину усіх чисел, що задовільняють подвійній нерівності −4<x<5 називають числовим проміжком і позначають: (−4;5).
Зобразимо проміжок на малюнку. Точки малюємо виколотими, оскільки вони не належать проміжку.
51_t02(1).png
Розглянемо інші проміжки.
−4≤x≤5 або x∈[−4;5]. Читається: «Проміжок від −4 до 5, включаючи −4 та 5».
51_t02(4).png
−4≤x<5 або x∈[−4;5). Читається: «Проміжок від −4 до 5, включаючи −4».
51_t02(2).png
−4<x≤5 або x∈(−4;5]. Читається: «Проміжок від −4 до 5, включаючи 5».
51_t02(3).png
Поделитесь своими знаниями, ответьте на вопрос:
Вычислить наиболее рациональным способом: а) 34, 5(в квадрате)-33, 5*35, 5 б) 444, 4(в квадрате)-555, 5*333, 3
Диаграмма Венна (также используется название диаграмма Эйлера — Венна) — схематичное изображение всех возможных отношений (объединение, пересечение, разность, симметрическая разность) нескольких (часто — трёх) подмножеств универсального множества. На диаграммах Венна универсальное множество {\displaystyle U}U изображается множеством точек некоторого прямоугольника, в котором располагаются в виде кругов или других простых фигур все остальные рассматриваемые множества[1][2].
Диаграммы Венна применяются при решении задач вывода логических следствий из посылок, выразимых на языке формул классического исчисления высказываний и классического исчисления одноместных предикатов[3], для :
описания функционирования формальных нейронов Мак-Каллока и сетей из них[4]
синтеза надежных сетей из не вполне надежных элементов[5],
построения управляющих и самоуправляющихся систем и блочного анализа и синтеза сложных устройств[6],
получения логических следствий из заданной информации, минимизации формул исчислений[7][8].
Диаграммы Венна при {\displaystyle n}n фигур изображают все {\displaystyle 2^{n}}2^{n} комбинаций {\displaystyle n}n свойств, то есть конечную булеву алгебру[9]. При {\displaystyle n=3}n=3 диаграмма Эйлера — Венна обычно изображается в виде трёх кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.
Дальнейшим развитием аппарата диаграмм Венна в классическом исчислении высказываний является аппарат вероятностных диаграмм [10], понятие сети диаграмм, использующей диаграммы Венна как операторы[11].
Они появились в сочинениях английского логика Джона Венна (1834—1923), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году.
Объяснение: