petrakovao
?>

Разложить многочлен на множетели а) 5y^2(y-4)+(4-y)^2 b) 125a^3+150a^2b+90ab^2+27b^3

Алгебра

Ответы

ИльяАндреевич-Мария
Y1=4 y2=-1 y3=8/10
kabinet17
Cos^2(x)+cos^2(2x)=cos^2(3x)+cos^2(4x) cos^2(x) - cos^2(3x) = cos^2(4x) - cos^2(2x) далее разность квадратов с обоих сторон (cos(x) - cos(3x))*(cos(x) + cos(3x)) = (cos(4x) - cos(2x))*(cos(4x) + cos(2x)) далее применяем формулы cosa-cosb=-2sin( (a+b)/2 )*sin( (a-b)/2 ) cosa+cosb=2cos( (a+b)/2 )*cos( (a-b)/2 ) получаем, -2sin( (x+3x)/2 )*sin( (x-3x)/2 ) * 2cos( (x+3x)/2 )*cos( (x-3x)/2 ) = = -2sin( (4x+2x)/2 )*sin( (4x-2x)/2 ) * 2cos( (4x+2x)/2 )*cos( (4x-2x)/2 ) слегка, 2-йки сокращаем, имеяя ввиду, что sin(-x)=-sin(x), а cos(-x)=cos(x) sin(2x)*sin(x)*cos(2x)*cos(x)=-sin(3x)*sin(x)*cos(3x)*cos(x) сокращая на sin(x) и cos(x) имеем ввиду, что это также является решением уравнения, т. е. уравнение распадается на три уравнения 1) sin(x)=0, тут x=пk, где k-целое число 2) cos(x)=0, тут x=п/2*k, где k-целое число 3) после сокращения на sinx и cosx sin(2x)cos(2x)=-sin(3x)cos(3x) здесь применяем формулу sin(2x)=2*sin(x)*cos(x), получаем 1/2*sin(4x)=-1/2*sin(6x) sin(4x)+sin(6x)=0 далее применяем формулу sina+sinb=2sin( (a+b)/2 )*cos( (a-b)/2 ), получаем 2sin( (4x+6x)/2 )*cos( (4x-6x)/2 ) = 0 на 2 сокращаем, получаем sin(5x)*cos(x) = 0 cos(x)=0 у нас уже имелось в пункте 2) остается sin(5x)=0 => 5x=пk => x=п/5*k, k - целое объединяем решения: 1)x=пk, где k-целое число 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое третье включает в себя первое, можно на тригонометрическом круге посмотреть, если так не понятно, поэтому остается 2)x=п/2*k, где k-целое число 3)x=п/5*k, k - целое число дальше мудохаться не стоит, ответ: x=п/2*k, где k-целое число и x=п/5*k,где k - целое число p.s. п-это пи=3.1415 если что (число эйлера вроде как)
pavpe4198

В один круг это означает, что каждая команда может сыграть с любой другой командой не более 1 раза? Если да, то:

У одной команды число сыгранных матчей должно быть не более 17-ти. Пусть в какой-то момент НЕ найдутся две команды, сыгравшие одинаковое число игр.

У всех команд должны быть разное количество сыгранных матчей. Необходимо 18 разных цифр - кол-во матчей у всех команд. При этом эти цифры должны находиться в отрезке [0;17]. Единственный доступный вариант, удовлетворяющий данным условиям, - ряд идущих подряд цифр от 0 до 17.

Если одна из команд сыграла 17 матчей, то она должна была сыграть со всеми командами хотя бы по одному разу. А мы видим, что одна из команд не сыграла ни одного матча.

Мы использовали метод "от противного" и пришли к логическому противоречию. Это означает, что в любой момент найдутся две команды,сыгравшие одинаковое число игр.

Извиняюсь за тяжелое, возможно, для восприятие решение.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разложить многочлен на множетели а) 5y^2(y-4)+(4-y)^2 b) 125a^3+150a^2b+90ab^2+27b^3
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Elvira-Natalya
polina25258
Манько_Панферов
komolovda
mirdetzhuk79
Anna Artem
alenkadon6
R7981827791127
tip36
MariyaKhanbalaeva585
pavlovm8316
zimbickij19
annodomini1
Zheleznyakova
lukanaft