vitaldicky349
?>

Разложите многочлены на множители x^3-a^3+3a^2-3a+1

Алгебра

Ответы

СветланаВАЛМОС
X^3-a^3+3a^2-3a+1=x³-(a-1)³=(x-a+1)(x²+x(a-1)+(a-1)²)
Мунировна

40 (бонусов) в минуту собирает первый геймер.

36 (бонусов) в минуту собирает второй геймер.

Объяснение:

На сбор 4000 бонусов первый геймер тратит времени столько же, сколько второй на сбор 3600 бонусов. Сколько бонусов в минуту собирает второй геймер, если первый собирает на 4 бонуса в минуту больше?

х - бонусов в минуту собирает второй геймер.

х+4 - бонусов в минуту собирает первый геймер.

4000/(х+4) - время первого геймера.

3600/х - время второго геймера.

По условию задачи время геймеров равно, уравнение:

4000/(х+4)=3600/х

Общий знаменатель х(х+4), надписываем над числителями дополнительные множители, избавляемся от дроби:

4000*х=3600(х+4)

4000х=3600х+14400

4000-3600=14400

400х=14400

х=14400/400

х=36 (бонусов) в минуту собирает второй геймер.

36+4=40 (бонусов) в минуту собирает первый геймер.

Проверка:

4000:40=100 (минут)

3600:36=100 (минут)

100=100, верно.

ALLA1868

y = 2x^{3} - 3x^{2}

y' = (2x^{3} - 3x^{2})' = 6x^{2} - 6x

Необходимые условия экстремума:

y' = 0

6x^{2} - 6x = 0

6x(x - 1) = 0

\left[\begin{array}{ccc}x_{1} = 0\\x_{2} = 1\\\end{array}\right

Имеем две критические (стационарные) точки: x_{1} = 0 и x_{2} = 1

Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.

Если точка с абсциссой x_{0} меняет знак с "+" на "–" (двигаясь в направлении увеличения x), то x_{0}  — точка максимума, а если с "–" на "+" , то x_{0}  — точка минимума.

Из промежутка x \in (-\infty; \ 0) выберем, например, x = -1 и имеем: y'(-1) = 6 \cdot (-1)^{2} - 6\cdot (-1) = 6 + 6 = 12 0

Из промежутка x \in (0; \ 1) выберем, например, x = 0,5 и имеем: y'(0,5) = 6 \cdot (0,5)^{2} - 6\cdot 0,5 = 1,5 - 3 = -1,5 < 0

Имеем максимум в точке с абсциссой x_{\max} = 0

Из промежутка x \in (1; \ +\infty) выберем, например, x = 2 и имеем: y'(2) = 6 \cdot 2^{2} - 6\cdot 2 = 24 - 12 = 12 0

Имеем минимум в точке с абсциссой x_{\min} = 1

ответ: x_{\max} = 0, \ x_{\min} = 1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разложите многочлены на множители x^3-a^3+3a^2-3a+1
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Маринина_Елена
alislisa191
LYuBOV
valerii_Georgievna915
satinvova
okison2847
ivshzam
Pirogovskii695
FATEEV
manager-3
shoora
Larya
Yevgeniya Bessonov
baulinanatalia7201
klykovav672