общая схема исследования и построения графика функции
при построении графиков функций можно придерживаться следующего плана:
1. найти область определения функции и область значений функции, выявить точки разрыва, если они есть - их нет, поэтому d(f) = r.
2. выяснить, является ли функция четной или нечетной - ни та, ни другая.
3. выяснить, является ли функция периодической - нет.
4. найти точки пересечения графика с осями координат (нули функции).
пересечение с осью оу: х = 0, у = 0,
с осью ох: у = 0, x³-3x²-9x = 0, вынесем х за скобки:
х(x²3x²-9) = 0, отсюда получаем значение первого корня:
х₁ = 0, далее приравниваем нулю квадратный трёхчлен:
x² - 3x - 9 = 0.
квадратное уравнение, решаем относительно x:
ищем дискриминант:
d=(-3)^2-4*1*(-9)=9-4*(-9)=*9)=)=9+36=45;
дискриминант больше 0, уравнение имеет 2 корня:
x₂=())/(2*1)=(√45+3)/2=√45/2+3/2 = 3√2/2+1.5 ≈ 4.85410197;
x₃=(-√))/(2*1)=(-√45+3)/2=-√45/2+3/2=-3√2/2+1.5≈-1.85410197.
5. найти асимптоты графика - не имеет.
6. вычислить производную функции f'(x) и определить критические точки.
f(x)=x³-3x²-9x, f'(x)=3x²-6x-9 приравниваем нулю:
3x²-6x-9 = 0.
квадратное уравнение, решаем относительно x:
ищем дискриминант:
d=(-6)^2-4*3*(-9)=36-4*3*(-9)=36-12*(-9)=*9)=)=36+108=144;
дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√))/(2*3)=())/(2*3)=(12+6)/(2*3)=18/(2*3)=18/6=3;
x₂=(-√))/(2*3)=(-))/(2*3)=(-12+6)/(2*3)=-6/(2*3)=-6/6=-1.
критические точки x₁ = 3, x₂ = -1.
7. найти промежутки монотонности функции: (-∞; -1), (-1; ; +∞).
8. определить экстремумы функции f(x).
надо определить знаки производной на промежутках монотонности.
х = -2, у' = 3*4 + 12 - 9 = 15 функция возрастающая,
х = 2, у' = 3*4 - 12 - 9 = -9 функция убывающая,
х = 4, у' = 3*16 - 24 - 9 = 15 функция возрастающая.
9. вычислить вторую производную f''(x) = 6х - 6 = 6(х - 1).
10. определить направление выпуклости графика и точки перегиба:
функция вогнутая на промежутках [1, oo) ,выпуклая на промежутках (-oo, 1]11. построить график, используя полученные результаты исследования.
Поделитесь своими знаниями, ответьте на вопрос:
Умножьте одно из уравнений системы на такое число, чтобы с сложения можно было исключить одну из переменных 2x-7y=8 и x+3y=5