Объяснение:
Второй ехал со скоростью x, значит первый: x + 4
Всю дорогу первый за 96/(x+4) часа, а второй за 96/x часа
Значит:
4 + 96/(x+4) = 96/x
Приведем к общему знаменателю:
(4x + 16 + 96)/(x+4) = 96/x
Вынесем из скобок 4
4(x+4+24)/(x+4) = 4*24/x
Сократим 4
(x+28)/(x+4) = 24/x
Перемножим крест-накрест
(x+28)x = 24(x+4)
x^2 + 28x = 24x + 96
x^2 + 4x - 96 = 0
D = 4 + 96 = 100
x = -2 +-10 = -12 или 8
-12 не удовлетворяет, так как скорость не может быть минусовой.
Значит скорость второго: 8 км/ч, он же и пришел к финишу на 4 часа позже первого, значит:
ответ: 8км/ч
x1=1/4
x2=1/2
Объяснение:
5*√(x^2020) +4*|x| = 5*√( (1-3x)^2020) + 4*|1-3x|
Рассмотрим функцию
f(t) = 5*√(t^2020) +4*|t|
Наше уравнение можно записать в виде :
f(x) = f(1-3x)
Очевидно, что при t >=0 функция f(t) монотонно возрастает при возрастании аргумента t .
Так же очевидно , что функция четная
f(-t) = 5*√((-t)^2020) +4*|-t| = 5*√(t^2020) +4*|t| = f(t) , то есть функция симметрична оси y , причем f(0)=0
Откуда очевидно , что если аргументы t1 и t2 не равны по модулю
|t1|≠|t2| , то и f(t1)≠f(t2) иначе это противоречило бы монотонному возрастанию функции на t>=0 или четности функции.
То есть f(t1) = f(t2) тогда и только тогда , когда аргументы t1 и t2 равны или противоположны .
Иначе говоря |t1|=|t2|
Таким образом из уравнения
f(x) = f(1-3x)
Следует уравнение
|x|=|1-3x|
1) x= 1-3x
4x=1
x1=1/4
2) -x= 1-3*x
2x=1
x2=1/2
Поделитесь своими знаниями, ответьте на вопрос:
Коробка для подарка имеет форму куба. на окраску всех ее граней (включая дно и крышку) снаружи потребовалось 120г краски. определите и запишите в ответ необходимое количество краски (г) для такого же оформления второй подарочной коробки, которая также имеет форму куба, но её сторона в 1, 5 раза больше первой?
чтобы узнать сколько краски пойдет на вторую коробку надо сначало узнать сколько краски уйдет на сторону второй коробки
т. е. 120+ 60(половина )=180;
теперь надо 180х6=1080грамм краски уйдет на покраску второй коробки.