Подставим х=8, у=0 в выражение у=ах²+bx+c получим 0=а·8²+b·8+c 64a+8b+c=0 наименьшее значение в вершине параболы, при условии, что ветви параболы направлены вверх, при этом а > 0 абсцисса вершины: х₀=-b/2а ⇒ 6=-b/2a ⇒-b=12a ⇒ b=-12a y₀=a·6²+b·6+c ⇒ -12=36a+6b+c решаем систему трех уравнений с тремя неизвестными: { 64a+8b+c=0 ⇒ 64 a + 8· (-12a)+c=0 -32a + c= 0 (*) { b=- 12a { -12=36a+6b+c ⇒ 36a +6·(-12a)+c=-12 -36a +c= -12 (**) вычитаем из (*) (**) 4а=12 ⇒ а=3 b=-12·3=-36 c=32a =32·3=96 ответ. у= 3х²-36х+96