Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:
Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира "Алгебраический тренажер" они используются без доказательства. Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.
Переходим к неравенству Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе
Снова применяем тот же метод, теперь к каждому из неравенств системы, после чего получаем после перенесения a влево, систему из четырех неравенств, которую для экономии места и времени для написания я изображу в виде
Рассуждая аналогично, получаем, что
Естественно, здесь такое обозначение я использовал для совокупности четырех неравенств, полученных всевозможными раскрытия модулей.
Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля c.
Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.
ответ: а=7 см, b= 4 см.
Объяснение:
"периметр прямоугольника равен 22 см. Если одну из его сторон уменьшить на 1 см, а вторую увеличить на 2 см, то достанем прямоугольник, площадь которого на 8 см2 больше чем площадь начального прямоугольника. Найдите стороны исходного прямоугольника"
***
Р =2(a+b), где а и b - размеры первоначального прямоугольника.
(а-1) см, (b+2) - размеры нового прямоугольника.
S1=ab см² - площадь первоначального прямоугольника;
S2=(a-1)(b+2) - площадь нового прямоугольника.
S2-S1=8 см².
(a-1)(b+2) - ab=8;
2(a+b)=22;
Это система уравнений. Решаем её:
ab+2a-b-2-ab=8;
2a-b=10;
a+b=11;
a=11-b;
2(11-b)-b=10;
22-2b-b=10;
-3b=-12;
b=4 см;
a=11-b=11-4=7 см.
Проверим:
периметр Р=2(4+7)=2*11=22 см. Всё верно!
Поделитесь своими знаниями, ответьте на вопрос:
Найдите промежутки возростания и убывания функции f(x)=x^3-3x-6
3x²-3=0
3(x²-1)=0
x²-1=0
x=1. x=-1
+-1-1+
-1- точка максимума
1- точка минимума
↑(-∞;-1)(1;+∞)
↓(-1;1)