Представьте в виде меогочлена:
1. (х-3)(х^2+2х-6) = х(х^2+2х-6)-3(х^2+2х-6) = х^3+2х^2-6х-3х^2-6х+18 = х^3-х^2-12х+18
2. (у+5)(у^2-3у+8) = у(у^2-3у+8)+5(у^2-3у+8) = у^3-3у^2+8у+5у^2-15у+40 = у^3+2у^2-7у+40
3. (b-2)(b^2-3b-8) = (b-2)(3b^3-18) = 3b^4-18b-6b^3+36 = 3b^4-6b^3-18b+36
4. (а+4)(a^2-6a+2) = a(a^2-6a+2)+4(a^2-6s+2) = a^3-6a^2+2a+4a^2-24a+8 = a^3-2a^2!22a+8
5. (6p-q)(3p+5q) = 6p(3p+5q)-q(3p+5q) = 18p^2+30pq-3pq-5q^2 = 18p^2+27pq-5q^2
Докажите тождество:
1. a(a-2)-8=(a+2)(a-4)
a^2-2a-8=a^2-4a+2a-8
-2a=-4a+2a
-2a=-2a
ответ: утверждение верно.
2. b(b-3)-18=(b+3)(b-6)
b^2-3b-18=b^2-6b+3b-18
-3b=-6b+3b
-3b=-3b
ответ: утверждение верно.
а) 8170
б) ≈ 0,71
Объяснение:
а)
Количество выбора m элементов из n - это число сочетаний из n по m:

Девочек должно быть не меньше трех. Значит возможны варианты выбора семи школьников в комитет:
3 девочки из семи и 4 мальчика из девяти (применяем правило произведения):


4 девочки и 3 мальчика:


5 девочек и 2 мальчика:


6 девочек и 1 мальчик:

и, наконец, все 7 человек - девочки .
По правилу суммы:
4410 + 2940 + 756 + 63 + 1 = 8170 - количество выбрать 7 человек в комитет так, чтобы в нем было не менее трех девочек.
б)
Всего школьников: 9 + 7 = 16 человек.
Количество выбрать 7 человек из шестнадцати:


Вероятность того, что в комитете будет не менее трех девочек:

Поделитесь своими знаниями, ответьте на вопрос:
решаем полученное уравнение
Соответственно второе число равно
или
ОТВЕТ: 140=10*14 или 140=(-14)*(-10)
Пусть первое число равно n тогда второе n+1. По условию
Решаем:
n=-5 исключаем, оно не натуральное (просто целое отрицательное :) )
Тогда второе равно n+1=6+1=7
Проверим 6*7=42 6+7=13
42-13=29 ok
ОТВЕТ: 12 и 13