snopovajulia
?>

При яких значеннях параметра а рівняння (2root(x)-a)*(2x^2-7x-4)=0 має єдиний корінь?

Алгебра

Ответы

Kuzina Sergeevna
(2 \sqrt{x} -a)(2x^2-7x-4)=0
ОДЗ: x≥0
  Решим квадратное уравнение 2x²-7x-4=0
Находим дискриминант
D=b² - 4ac = (-7)² - 4 * 2 * (-4) = 81
x1 = (7-9)/4 = -0.5 - не удовлетворяет ОДЗ
x2 = (7+9)/4 = 4

Уравнение будет иметь единственный корень только тогда когда корни будут одинаковы
2√x - a = 0
2√x = a
4x = a²
подставляем х=4 и получим
4*4 = a²
a=±4

ответ: при а = ±4
re-art

За интеграл я буду Июиспользовать вот этот знак:

\gamma

4 пример:

1) Перепишите дробь:

\gamma - \frac{1}{x} + \frac{2}{x + 6} dx

2) Использовать свойства интегралов:

- \gamma \frac{1}{x} dx + \gamma \frac{2}{x + 6} dx

3) Вычислить интегралы и прибавить константу интегрирования С:

- ln( |x| ) + 2 ln( |x + 6| ) + c

5 пример:

1) Найти неопределённый интеграл:

\gamma x \sqrt{x + 8} dx

2) Упростить интеграл, используя метод замены переменной:

\gamma t \sqrt{t} - 8 \sqrt{t} dt

3) Преобразовать выражения:

\gamma t \times {t}^{ \frac{1}{2} } - 8 {t}^{ \frac{1}{2} } dt

4) Вычислить произведение:

\gamma {t}^{ \frac{3}{2} } - 8 {t}^{ \frac{1}{2} } dt

5) Использовать свойство интегралов:

\gamma {t}^{ \frac{3}{2} } dt - \gamma 8 {t}^{ \frac{1}{2} } dt

6) Вычислить интегралы:

\frac{2 {t}^{2} \sqrt{t} }{5} - \frac{16t \sqrt{t} }{3}

7) Выполнить обратную замену:

\frac{2 {(x + 8)}^{2} \times \sqrt{x + 8} }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

8) Упростить выражение:

\frac{2 \sqrt{x + 8} \times ( {x}^{2} + 16x + 64) }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

9) Вернуть пределы интегрирования и подставить в пример (8):

\frac{2 \sqrt{8 + 8} \times ( {8}^{2} + 16 \times 8 + 64) }{5} - \frac{16(8 + 8) \sqrt{8 + 8} }{3} - ( \frac{2 \sqrt{1 + 8} \times ( {1}^{2} + 16 \times 1 + 64)}{5} - \frac{16(1 + 8) \sqrt{1 + 8} }{3} ) = \frac{1726}{15}

6 пример
kozhevniks

За интеграл я буду Июиспользовать вот этот знак:

\gamma

4 пример:

1) Перепишите дробь:

\gamma - \frac{1}{x} + \frac{2}{x + 6} dx

2) Использовать свойства интегралов:

- \gamma \frac{1}{x} dx + \gamma \frac{2}{x + 6} dx

3) Вычислить интегралы и прибавить константу интегрирования С:

- ln( |x| ) + 2 ln( |x + 6| ) + c

5 пример:

1) Найти неопределённый интеграл:

\gamma x \sqrt{x + 8} dx

2) Упростить интеграл, используя метод замены переменной:

\gamma t \sqrt{t} - 8 \sqrt{t} dt

3) Преобразовать выражения:

\gamma t \times {t}^{ \frac{1}{2} } - 8 {t}^{ \frac{1}{2} } dt

4) Вычислить произведение:

\gamma {t}^{ \frac{3}{2} } - 8 {t}^{ \frac{1}{2} } dt

5) Использовать свойство интегралов:

\gamma {t}^{ \frac{3}{2} } dt - \gamma 8 {t}^{ \frac{1}{2} } dt

6) Вычислить интегралы:

\frac{2 {t}^{2} \sqrt{t} }{5} - \frac{16t \sqrt{t} }{3}

7) Выполнить обратную замену:

\frac{2 {(x + 8)}^{2} \times \sqrt{x + 8} }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

8) Упростить выражение:

\frac{2 \sqrt{x + 8} \times ( {x}^{2} + 16x + 64) }{5} - \frac{16(x + 8) \sqrt{x + 8} }{3}

9) Вернуть пределы интегрирования и подставить в пример (8):

\frac{2 \sqrt{8 + 8} \times ( {8}^{2} + 16 \times 8 + 64) }{5} - \frac{16(8 + 8) \sqrt{8 + 8} }{3} - ( \frac{2 \sqrt{1 + 8} \times ( {1}^{2} + 16 \times 1 + 64)}{5} - \frac{16(1 + 8) \sqrt{1 + 8} }{3} ) = \frac{1726}{15}

6 пример

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

При яких значеннях параметра а рівняння (2root(x)-a)*(2x^2-7x-4)=0 має єдиний корінь?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sargisyan77
Lolira64
Suralevartem
Sidunevgeniya
miha23727
randat887040
Yelena1409
fygasika
vikola2008
Lilykl
olesya-cat8601
Grigorevna23
panstel
Lianchikavon
janetp