Теорема. Пусть х₁ и х₂ корни квадратного трехчлена х²+px+q. Тогда этот трехчлен раскладывается на линейные множители следующим образом =(х-х₁)(х-х₂). Доказательство. Подставим вместо p и q их выражения через х₁ и х₂ и проведем группировку. x²+px+q=x²(x₁+x₂)x+x₁x₂=x²-x₁x-x₂x+x₁x₂=x(x-x₁)-x₂(x-x₁)=(x-x₁)(x-x₂) Что и требовалось доказать.
Yelena642
30.03.2020
Z=f(x,y)=x²+xy+y²+x+y-27 функция определена
частные производные dz/dx=2x+y+1=0 и dz/dy=x+2y+1=0 Решая систему получим y=-2x-1 x+2(-2x-1)+1=0 x-4x-2+1=0 -3x=1 x=-1/3 y=-1/3 точка возможного экстремума (-1/3;-1/3) Если в этой точке выполнено условие f''xx × f''yy – (f''x y)² > 0, то точка (-1/3;-1/3) является точкой экстремума причем точкой максимума, если f''xx < 0, и точкой минимума, если f''xx > 0. где։ f''xx вторая производная по x f''yy вторая производная по y (f''x y)² производная по x, потом по y
очевидно что 2*2-1²>0 и f''xx >0 значит точка (-1/3;-1/3) является точкой минимума
marketing6
30.03.2020
Частные производные
Частной производной по x функции z = f(x,y) в точке A(x0,y0) называется предел отношения частного приращения по x функции в точке A к приращению ∆x при стремлении ∆x к нулю.
Частные производные функции z(x,y) находятся по следующим формулам: Частные производные
Вторые частные производные функции z(x,y) находятся по формулам:
Вторые частные производныеВторые частные производные функции z(x,y)находятся по формулам:  Смешанные частные производные функции z(x,y)находятся по формулам: 
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сформулируйте и докажите теорему о разложении на множители квадратного трехчлена, имеющего корни.
=(х-х₁)(х-х₂).
Доказательство. Подставим вместо p и q их выражения через х₁ и х₂ и проведем группировку.
x²+px+q=x²(x₁+x₂)x+x₁x₂=x²-x₁x-x₂x+x₁x₂=x(x-x₁)-x₂(x-x₁)=(x-x₁)(x-x₂)
Что и требовалось доказать.