(1;2) (2;1)
Объяснение:
Мы видим так называемую симметрическую систему уравнений(при замене переменных друг на друг, система не изменится. Для такой системы есть стандартная замена xy=t, x+y=k
, тогда перепишем как. Теперь нужно представить уравнение в первой строке системы через новые переменные, для этого попробуем выделить полный квадрат, x²+y² из этой суммы можно получить 2 вида квадрата, квадрат суммы и квадрат разности, нам выгодно сделать сумму, тогда добавим 2xy, но чтобы ничего не изменилось вычтем 2xy. Тогда (x²+2xy+y²)-2xy=5. Свернем (x+y)²-2xy=5. Теперь мы видим наши замены в чистом виде 1-ая строка = k²-2t=5.
. Теперь перейдем к следующему. из второго уравнения вычтем t из обеих частей, тогда k=5-t. и подставим это значение k в первое.
Расскроем скобки, t²-10t+25-2t-5=0
t²-12t+20=0. Получили квадратное уравнение, которое решаем любым удобным (для меня Т. обратная Т.Виета)
t=10 или t=2. удобнее записать так =10 =2, отсюда найдем
=5-=5-10=-5, =5-=5-2=3.
Теперь обратные замены в 2 системы
. опять замена), x=-5-y., -5y-y²=10,y²+5y+10=0, D=25-40,эта система решений не имеет( на множестве действительных чисел)
. Опять замена x=3-y. 3y-y²=2, y²-3y+2,тогда =2,=1. Тогда =1,=2. Что не удивительно, т.к. в симметрических системах достаточно получить ответ лишь для одной переменной и просто поменять местами с другой, но мы в этом, так сказать, убедились.
ответ 2 пары чисел (1;2) (2;1)
В решении.
Объяснение:
Сравнить:
1) 4,7*10^-6 и 5,9*10^-7;
4,7*10⁻⁶ и 5,9*10⁻⁷;
1/4,7⁶ и 1/5,9⁷;
1/4,7⁶ > 1/5,9⁷;
Чем больше знаменатель, тем меньше значение дроби.
2) 1,23*10^6 и 0,12*10^7;
1,23*10⁶ и 0,12*10⁷;
Привести второе число к стандартному виду:
1,23*10⁶ и 1,2*10⁶;
1,23*10⁶ > 1,2*10⁶;
Если показатели степени одинаковые, больше то число, основание которого больше.
3) 31,6*10^-8 и 0,061*10^-8;
31,6*10⁻⁸ и 0,061*10⁻⁸;
1/31,6⁸ и 1/0,061⁸;
Привести оба знаменателя к стандартному виду:
1/3,16⁹ и 1/6,1⁶;
1/3,16⁹ < 1/6,1⁶;
Чем больше знаменатель, тем меньше значение дроби.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите числовое зачение выражения, предварительно его: 1) (2с+5b) - (c+4d) при с= 0, 4 d =0.6; 2) (3a-4b) - (2a-3b) при а=0, 12, b=1.28; 3) (7х+8у) - (5х-2у) при х = - 3/4, у=0, 025; 4) (5с-6b) - (3c-5b) при с= - 0, 25, b = 2 2/1.
c=0.4 d=0.6
0.4+0.6=1
(3a-4b)-(2a-3b)=3a-4b-2a+3b=a-b
a=0.12 b=1.28
0.12-1.28=-1.16
(7x+8y)-(5x-2y)=7x+8y-5x+2y=2x+10y
x=-3/4 y=0.025
2*(-3/4)+10*0.025=-1.5+0.25=-1.25
(5c-6b)-(3c-5b)=5c-6b-3c+5b=2c-b
c=-0.25 d=2 1/2
2*(-0.25)-5/2=-0.5-2.5=-3