Объяснение:Іноді подкоренное вираз розкладається на такі множники, коріння з яких витягуються досить легко. У таких випадках вираз можна спростити за до винесення множника з-під знака кореня. Наприклад, '
√12 = √4 • 3 = √4 • √3 = 2√3;
4√1250 = 4√625 • 2 = 4√54 • 2 = 4√54 • 4√2 = 54√2.
Винесення множника за знак кореня дозволяє спростити і більш складні вирази. так,
√18 + √50 -√98 = √9 • 2 + √25 • 2 - √49 • 2 = 3√2 + 5√2- 7√2 = √2;
3√81 - 3√24 + 3√375 = 3√27 • 3 - 3√8 • 3 + 3√125 • 3 = 33√3 -23√3 + 53√3 = 63√3:
Іноді виявляється корисним, навпаки, ввести який-небудь множник під знак кореня.
Нехай, наприклад, потрібно обчислити наближене значення 7√8 з нестачею з точністю до 0,1. Введемо 7 під знак кореня. Для цього зауважимо, що 7 = √49. Тому 7√8 = √49 • √8 = √49 • 8 = √392. Витягуючи корінь з 392 звичайним отримаємо наступне наближене значення цього кореня з нестачею з точністю до 0,1: √392 ≈19,7. Якби ми не ввели 7 під знак кореня, а вирахували б наближене значення √8 з точністю до 0,1 (√8 ≈ 2,8) і отриманий результат помножили на 7, то отримали б 7√8 ≈ 19,6, то є помилилися на 0,1. Цей приклад показує, яку користь може надати введення множника під знак кореня.
Крім того, введення множника під знак кореня призводить іноді до значного спрощення виразу. наприклад
Для построение этого вида функций, которые под знаком модуля содержат всю функцию, можно построить отдельно функцию, которая находится под знаком модуля, а затем отобразить относительно оси Ох ту ее часть, для которой значения у – отрицательные. Это позволит получить положительные значения у для всей функции.
Итак, построим параболу, которая будет графиком заданной функции без знака модуля:
у1 = 6x – 5 – x^2.
Сначала найдем ее вершину с формулы х = –b / (2a):
х = –6 / (2*(–1)) = 3
Вычислим значение функции:
у1(3) = 6*3 – 5 – 3^2 = 4.
Получили в точке (3; 4).
Точки пересечения с осью Ох найдем, подставив в уравнение для у1 значение у1 = 0 и решив полученное уравнение:
6x – 5 – x^2 = 0
По теореме Виета или любым другим доступным находим, что корнями уравнения будут значения 1 и 5. Значит функция пересечет ось Ох в точках (1; 0) и (5; 0).
Построенный график – это график функции у1 = 6x – 5 – x^2.
Теперь отображаем относительно оси Ох все, что находится под ней, и получаем график функции у = |6x – 5 – x^2|.
Построить график можно и другим подставляя значения х в заданную функцию с модулем. Но проведенный анализ Вам понять сущность модуля при построении графиков.
Объяснение:
Я к примеру объяснил.
Поделитесь своими знаниями, ответьте на вопрос:
Последовательность прогрессия найдите б6 если извечтно что б1=125 б3=5
bn=b1*q^(n-1)
b3=b1*q^(3-1)
5=125*q^2
q^2=0,04
q1=0,2
q2=-2
b6=b1*q^(6-1)=125*(0,2)^5=0,04
или
b6=b1*q^(6-1)=125*(-0,2)^5=-0,04