Особенность правильного шестиугольника — равенство его стороны и радиуса описанной окружности. Периметр шестиугольника равен 48 => сторона равна 48/6=8; то есть радиус описанной окружности равен 8. Если вписать в эту окружность квадрат то его диагональ - это диаметр окружности - то есть 16, стороны квадрата пусть будут х, тогда по теореме пифагора (диагональ и две стороны квадрата образуют прямоугольный треугольник - гипотенуза это диагональ квадрата а кататы равны между собой - стороны квадрата)
Объяснение:
Подайте в виде произведения выражение.
здесь имеем дело с суммой a³+b³=(a+b)(a²-ab+b²)
и разностью кубов a³-b³ = (a-b)(a²+ab+b²).
***
1) a⁶ - 8= (a²)³ -(2)³ = (a²-2)(a⁴+2a² + 4);
***
2) m¹² +27 = (m⁴)³ + (3)³ = (m⁴+3)(m⁸-3m⁴+9);
***
3) a³-b¹⁵c¹⁸ = (a)³ - (b⁵c⁶)³ = (a-b⁵c⁶)(a²+ab⁵c⁶+b¹⁰c¹²);
***
4) 1-a²¹b⁹ = (1)³ - (a⁷b³)³ = (1-a⁷b³)(1 + a⁷b³ + a¹⁴b⁶);
***
5) 125c³d³+0.008b³ = (5cd)³ + (0.2b)³ = (5cd+0.2b)(25c²d²-bcd+0.04b²);
***
6) 64/729x³ - 27/1000y⁶ = (4/9x)³ - (3/10y²)³ =
= (4/9x- 3/10y²)(16/81x²+2/15xy²+9/100y⁴).
Поделитесь своими знаниями, ответьте на вопрос:
Кто может решите уравнение, разложив левую часть на множители известными вам а)х²-3х=0; б)6у(у+1)+у+1=0; в)t³+4+t²+4t=0;
x(x-3) = 0
Произведение равно нулю, если один из множителей (или оба) равен нулю, поэтому наше уравнение распадается на два уравнения (это значит, что его корнями будут корни двух "уменьшонных" уравнений, в которых мы множители приравниваем к нулю):
=0
- 3 = 0
= 3
ответ: 0; 3
б)6у(у+1)+у+1=0;
(6у+1)(у+1)=0
Аналогично решению записываем два уравнения, приравниваю к нулю множители 6y+1 и y+1:
6y+1=0 y+1=0
6y = -1 y = -1
y = -1/6
ответ: -1; -1/6
в)t³+4+t²+4t=0;
(t²+4)+(t³+4t)=0
(t²+4)+t(t²+4)=0
(t²+4)(1+t)=0
Снова разбиваем на два уравнения:
t²+4=0 1+t=0
t² = -4 t = -1
Первое уравнение корней не имеет, т.к. квадрат любого числа неотрицателен. Следовательно,
ответ: -1