пусть за хч-первая выполнит,а х+5 ч-выполнит вторая машина.
1/х-производительность первой машины в 1час,а 1/(х+5) -производительность второй.
а 1/6 ч общая производительность за 1час.
Составим уравнение:
1/х+1/(х+5)=1/6 - приводим к общему знаменателю-6*х*(х+5)
6х+6х+30=х²+5х
х²-7х-30=0
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:
D=(-7)²-4*1*(-30)=49-(-120)=49+120=√169=13;
Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(13+7)/2=20/2=10;
x₂=((-13+7)/2=-6/2=-3 - этот ответ не подходит,т.к. время не может быть отрицательное.
Значит
первая снегоуборочная машина в отдельности выполнить всю работы за 10часов
а вторая 10+5=за 15часов.
1) Логарифм определен на положительной полуоси, на ней х не равен нулю, так что со знаменателем все ок. Потому функция определена на положительной полуоси (0,+беск)
2) Фцнкция не определена на отрицателных значениях, потому она не может быть четной или нечетной.
3)С Оу не пересекается, т.к не определена в точке х=0. С Ох точка пересечения - решение уравнения
это уравнение не имеет решений в элементарных функциях, это далеко за рамками школьной программы. Если устроит - решение этого уравнения - так называемая константа Омега.
4) Функция непрерывна на (0,+беск) как сумма константы и частного двух непрерывных функций
5)---
6)Асимптоты 2, видно из самого графика. Одна - у=1, так как функция стркмится к 1 при х стремящемуся к бесконечности. Вторая - х=0, так как функция стрмится к минус бесконечности при х стремящимуся к нулю. Возможно, в вашем курсе вторая асимптота не рассматривается, так как асимптота х=0 не есть функция.
7,8) Так как
То х=е - точка экстремума. Уже говорилось, что функция стремится к 1 при х стремящемуся к бесконечности и к -беск при х стрмящемуся к нулю. Так как в точке е функция больше 1, то это точка локального (и глобального) максимума.
Функция растет на (0,е) и падает на (е, +беск)
9)
Для иксов меньше найенного значения вторая производная отрицательна, следовательно функция выпукла. Для иксов больше - чсе наоборот, следтвательно, функция вогнута
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите первые пять членов последовательности: a)уn=2n^2-n б)yn=(-1)^n/n^2+1
a) уn = 2n² - n
y₁ = 2*1² - 1 = 1
y₂ = 2*2² - 2 = 6
y₃ = 2*3² - 3 = 18 - 3 = 15
y₄ = 2*4² - 4 = 32 - 4 = 28
y₅ = 2*5² - 5 = 50 - 5 = 45
б) yn = (-1)^n / (n^2+1)
y₁ = (-1)¹ / (1² + 1) = - 1/2
y₂ = (-1)² / (2² + 1) = 1/5
y₃ = (-1)³ / (3² + 1) = - 1/10
y₄ = (-1)⁴ / (4² + 1) = 1/17
y₅ = (-1)⁵ / (5² + 1) = - 1/26