cos2x=cosx
2cos^2x-1-cosx=0
пусть cosx=t? -1<=t<=1
2t^2-t-1=0
D=1+8=9, d=3
t=-1/2
t=1
cosx=-1/2 cosx=1
x=+-pi/3+2pi*n, n принадлежит z x=2pi*n, n принадлежит z
1. -2pi<=pi/3+2pi*n<=-pi (умножаем на 3)
-6pi<=pi+6pi*n<=-3pi (переносим pi)
-5pi<=6pi*n<=-4pi (делим на 6pi)
-5/6<=n<=-4/6
корней нет
2. -2pi<=-pi/3+2pi*n<=-pi (умножаем на 3)
-6pi<=-pi+6pi*n<=-3pi (переносим pi)
-5pi<=6pi*n<=-2pi (делим на 6pi)
-5/6<=n<=-2/6
корней нет
3. -2pi<=2pi*n<=-pi (делим на 2pi)
-1<=n<=-1/2
n=-1, корень: -2pi
n=0, корень 0
1) Сначала решим уравнение. x/2 = (-1)^n * (pi/3) + pi n.
x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z
Если n - четное, т.е. n=2k, то x/2 = pi/3 + 2pi k, x = 2pi/3 + 4pi k. Если n - нечетное, т.е. n = 2k + 1, то x/2 = -pi/3 +(2k+1) pi = -pi/3 +2pi k + pi = 2pi/3 + 2pi k,
x = 4pi/3 + 4pi k
2) Решим неравенство. Так основание pi>1, то x - 4pi < pi, x < 5pi. ОДЗ неравенства:
x - 4pi > 0, x>4pi. Совмещаем выделенные неравенства: 4pi < x < 5pi
3) Отбор корней. а) 4pi < 2pi/3 + 4pi k < 5pi, 4 < 2/3 +4k < 5, 12 < 2 + 12k < 15,
10 <12k < 13, 5/6 < k < 13/12. Отсюда k = 1 и x = 2pi/3 + 4pi = 14pi/3
б) 4pi < 4pi/3 + 4pi k < 5pi, 4 < 4/3 +4k < 5, 12 < 4 +12k < 15, 8 < 12k < 11,
2/3 < k < 11/12, так как к - целое число, то здесь решений нет.
Тогда ответ: а) решение уравнения x = (-1)^n*(2pi/3) + 2pi n, n принадлежит Z
б) корни, удовлетворяющие логарифмическому неравенству x = 14pi/3
Поделитесь своими знаниями, ответьте на вопрос:
Плотность железа 7, 8*10^3 кг/м3. найдите массу железной плиты, длина которой 1, 2 м, ширина 6*10^-1 м и толщина 2, 5*10^-1
m=ρ*V=ρ*l*h*d=7,8*10^3*1,2*6*10^(-1)*2,5*10^(-1)=
=7,8*1,2*6*2,5*10^1=1404
ответ масса плиты 1404 кг