1)d(y)=r 2)y(-x)=(-x)^3-6(-x)^2+2(-x)-6=-x^3-6x^2-2x-6-функция ни чётная, ни нечётная, без периода 3)oy: x=0,y(0)=0^3-6*0^2+2*0-6=0-0+0-6=-6 a(0; -6) ox: y=0,x^3-6x^2+2x-6=0 x=5, b(5,; 0) ∞; 5, y< 0 (5,; ∞) y> 0 5)y'=3x^2-12x+2 3x^2-12x+2=0 d=144-24=120> 0 x1,2=(12±2√30)/(2*3)=(12±2√30)/6=2± (-∞; 2- )∪(2+ ; ∞) растёт (2- ; 2+ ) не растёт xmax=2- ,xmin=2+ 6)асимптоты нет 7)! 1/3_h/ubwwf7wwf7rgzhf23/ap9g/2dft0qt7e9dbj7u7ub39jzp9w/2sttsxs4p4/f0i/ [email protected]= по-братски дай лучший ответ
Playintim405374
09.10.2021
Раскрываем знак модуля: 1) если х≥0, то | x| = x если y≥0, то | y| = y Уравнение принимает вид : (x+y-1)(x+y+1)=0 х+у-1=0 или х+у+1=0 у=-х+1 или у=-х-1 В первой четверти ( х≥0; у≥0) строим прямую у=-х+1, прямая у=-х-1 не проходит через первую четверть.
2)если х<0, то | x| =- x если y≥0, то | y| = y Уравнение принимает вид : (-x+y-1)(x+y+1)=0 -х+у-1=0 или х+у+1=0 у=х+1 или у=-х-1 Во второй четверти ( х<0; у≥0) строим две прямые у=х+1 или у=-х-1
3)если х<0, то | x| =- x если y<0, то | y| =- y Уравнение принимает вид : (-x+y-1)(x-y+1)=0 -х+у-1=0 или х-у+1=0 у=х+1 или у=х+1 В третьей четверти ( х<0; у<0) нет графика функции, так как прямая у=х+1 не расположена в 3 ей четверти
4) если х≥0, то | x| = x если y<0, то | y| =- y Уравнение принимает вид : (x+y-1)(x-y+1)=0 х+у-1=0 или х-у+1=0 у=-х+1 или у=х+1 В четвертой четверти ( х≥0; у<0) строим прямую у=-х+1, прямая у=x+1 не расположена в четвертой четверти. Тогда получится нужный график, см. рисунок
- x ≥ - 4
x ≤ 4
x ∈ ( - ∞ ; 4]
ответ
8