ответ:
объяснение:
5x^3 - 3x^5 = 0
x^3( 5 - 3x^2) = 0
x = 0
5 - 3x^2 = 0
-3x^2 = -5
x^2 = 5/3
x = -5/3
x = 5/3 (нули функции: -5/3; 0 ; 5/3 )
15x^2 - 15x^4 = 0
x^2 - x^4 = 0
x^2(1 - x^2) = 0
x^2 = 0
x = 0
1 - x^2 = 0
(1-x)(1+x) = 0
x = 1, x = -1
5 * 1^3 - 3 *1^5 = 5 - 3 = 2
-5 + 3 = -2
(1; 2) - точка максимума
(-1; -2) - точка минимума
--(-)--(-1)-(+)--0--(+)--(1) --(-)->
там где на интервале (-) там функция убывает, где (+) наоборот, т. е.
(-00; -1) - функция убывает
(-1; 0) - функция возрастает
(0; 1) - функция возрастает ( или (-1; 1))
(1; + 00) - функция убывает
Поделитесь своими знаниями, ответьте на вопрос:
Функция найти все значения параметра m, при которых уравнение f(x)=m имеет более одного корня. заранее огромное
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x) + - -
3/4 3 >x
f(x) возрастает убывает убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64