Рисунок смотрите в приложении (на нем изображены равные векторы).
Векторы равны, когда они имеют равные длины и одинаковое направление (и при этом лежат на параллельных прямых или на одной и той же прямой).а). Векторы и равны по модулю (то есть, равны их длины), как стороны квадрата, но имеют разное направление. Как видно из рисунка, угол между ними равен градусов (получаем, что это коллинеарные, но не равные векторы).
.
б). Векторы и равны по длине, лежат на параллельных прямых и имеют одинаковое направление. Значит, они равны.
.
в). Векторы и опять же имеют одинаковые длины. Но они никак не лежат на параллельных прямых, они являются перпендикулярными (так как угол квадрата - градусов).
ответ:а) нет;
б) да;
в) нет.
Поделитесь своими знаниями, ответьте на вопрос:
(x-1)^3+(2x+3)^3=27x^3+8 должно решаться без раскрытия по формулам сокращенного умножения, по кр мере частично
(х-1)³-2³=(3х)³-(2х+3)³
По формуле
a³-b³=(a-b)(a²+ab+b²)
(x-1-2)((x-1)²+2(x-1)+4)=(3x-2x-3)(9x²+3x·(2x+3)+(2x+3)²)
или
(x-3)·(х²-2х+1+2x-2+4)-(x-3)·(9x²+6х²+9х+4x²+12х+9)=0
или
(х-3)·(х²+3-19х²-21х-9)=0
(х-3)(-18х²-21х-6)=0
х-3=0 или 6х²+7х+2=0
х=3 D=49-4·6·2=1
x=(-7-1)/12=-2/3 или х=(-7+1)/12=-1/2
ответ. -2/3; -1/2; 3.
Можно и так, но вычисления более громоздкие.
По формуле a³+b³=(a+b)(a²-ab+b²).
(x-1)³+(2x+3)³=[a=x-1; b=2x+3]=
(x-1+2x+3)((x-1)²-(x-1)(2x+3)+(2x+3)²)=(3x+2)((x-1)²-(x-1)(2x+3)+(2x+3)²)
27x³+8=(3x)³+2³=(3x+2)((3x)²-(3x)·2+2²).
Уравнение примет вид
(3x+2)((x-1)²-(x-1)(2x+3)+(2x+3)²)=(3x+2)((3x)²-(3x)·2+2²)
или
(3x+2)·((x-1)²-(x-1)(2x+3)+(2x+3)²) - (3x+2)·((3x)²-(3x)·2+2²) = 0;
(3х+2)·((x-1)²-(x-1)(2x+3)+(2x+3)²-(3x)²+(3x)·2-2²)=0;
3х+2=0 или (x-1)²-(x-1)(2x+3)+(2x+3)²-(3x)²+(3x)·2-2²=0
х=-2/3 или х²-2х+1-2х²+2х-3х+3+4х²+12х+9-9х²+6х-4=0
-6х²+15х+9=0
2х²-5х-3=0
D=25+24=49
x=(5-7)/4=-1/2 или х=(5+7)/4=3
О т в е т. -2/3; -1/2; 3.