Существует ли бесконечное множество натуральных чисел в котором никакие 2 не являются взаимно простыми, а любые три взаимно просты? p.s. нужно доказательство помимо ответа.
Если такое множество существует, то рассмотрим его минимальный элемент. Он делится на конечное число простых p[1], ... ,p[k]. Каждый последующий элемент множества обязан делиться на одно из этих p[i], причем каждое такое p[i] может делить только один из последующих элементов (иначе было бы 3 не взаимно простых элемента), но тогда такое множество имеет не более k+1 элементов, т.е. оно конечно. Противоречие.
Ярослав
03.03.2023
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.
Теорема Пифагора может пригодится, если известно две стороны из трёх. a² = b² + c² a - гипотенуза; b, c - катеты.
Теперь остановимся на острых углах.
1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.
2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)
3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2) В таких случаях надо выражать тангенс, синус или косинус через стороны.
Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC. Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.
Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус. Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
Shamil
03.03.2023
В подобных задачах обычно используется теорема Пифагора и синусы, косинусы, тангенсы острых углов.
Теорема Пифагора может пригодится, если известно две стороны из трёх. a² = b² + c² a - гипотенуза; b, c - катеты.
Теперь остановимся на острых углах.
1) Один острый угол равен 45°. В таких задачах прямоугольный треугольник ещё и равнобедренный ⇒ равны катеты.
2) Один из острых углов равен 30° (60°). Есть одна теорема: напротив угла в 30° лежит катет в два раза меньше гипотенузы. Для большей наглядности возьмём треугольник ABC (∠C - прямой). Пусть ∠А = 30°, тогда AB (гипотенуза) = 2*BC (катет, напротив 30°)
3) Обычно острые углы в прямоугольном треугольнике либо равны 30°, 45°, 60°, либо даны синусы, косинусы, тангенсы этих углов ( например, tgA = 2) В таких случаях надо выражать тангенс, синус или косинус через стороны.
Например в треугольнике ABC (∠C - прямой) BC = 14, а tgA = 2. Нужно найти AC. Тангенс - отношение противолежащего катета к прилежащему, то есть tgA = BC : AC, подставив значения, находим AC = 7.
Приведу второй пример. Треугольник ABC (∠C - прямой), ∠A = 30°, AB = 8. Найти BC. Такую задачу можно решить по теореме, указанной выше под цифрой 2, или выразив сторону BC через синус. Синус - отношение противолежащего катета к гипотенузе, то есть sinA = BC : AB. sinA = sin30° = 1/2. Подставив значения, находим BC = 4.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Существует ли бесконечное множество натуральных чисел в котором никакие 2 не являются взаимно простыми, а любые три взаимно просты? p.s. нужно доказательство помимо ответа.